Skip to main content

The role of microbial metal resistance and detoxification mechanisms in environmental bioassay research

  • Conference paper
Environmental Bioassay Techniques and their Application

Part of the book series: Developments in Hydrobiology ((DIHY,volume 54))

  • 282 Accesses

Abstract

Numerous biological methods and bioassays have been developed for assessing toxicants in both environmental and laboratory samples. In many bioassays, microorganisms are used because of their rapid growth rates and ubiquitous distribution in aquatic and terrestrial environments. However, information is often lacking on the ecology, physiology and genetics of the test organism(s) or other organisms present in the test system. For example, Hg2+ can be volatilized via the mercuric reductase enzyme found in certain bacterial strains. Moreover, this detoxification/resistance mechanism may occur while the environmental sample is being used in a bioassay protocol. A fundamental knowledge of the mechanism(s) involved in microbial detoxification/resistance mechanisms is essential to understand how the bioassay organism(s) and toxicant(s) behave in environmental samples tested with bioassay protocols. This manuscript will review selected metal (arsenic, cadmium, mercury) detoxification/resistance mechanisms in bacteria with an emphasis on the manner in which the mechanisms may influence the bioassay results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiking H., A. Stijman, C. van Garderen, H. van Heekikhuizen and J. van’t Riet, 1984. Inorganic phosphate accumulation and cadmium dertoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture. Appl. Envir. Microbiol. 47: 374–377.

    CAS  Google Scholar 

  • Aiking H., K. Kok, H. van Heerikhuizen and J. van’t Riet, 1982. Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulphide. Appl. Envir. Microbiol. 44: 938–944.

    CAS  Google Scholar 

  • Babich H. & G. Stotzky, 1979. Abiotic factors affecting the toxicity of lead to fungi. Appl. Envir. Microbiol. 38: 506–513.

    CAS  Google Scholar 

  • Bitton, G. & V. Freihofer, 1978. Influence of extracellular polysaccharide on the toxicity of copper and cadmium towards Klebsiella sp. Microb. Ecol. 4: 119–125.

    Article  CAS  Google Scholar 

  • Bitton, G. & B. J. Dutka (eds.) 1986. Toxicity Teating Using Microorganisms. Vol. 1. CRC Press, Inc., Boca Raton, pp. 1–163.

    Google Scholar 

  • Brown N. L., 1985. Bacterial resistance to mercury-reductio adabsurdum? Trends Biochem. Sei. 10: 400–403.

    Article  CAS  Google Scholar 

  • Chopra L, 1975, Mechanism of plasmid-mediated resistance of cadmium in Staphylococcus aureus. Antimicrob. Agents. Chemother. 7: 8–14.

    Article  CAS  Google Scholar 

  • Dyke K. G. H., M. T. Parker & M. H. Richmond, 1970. Penicillinase production and metal ion resistance in Staphylococcus aureus cultures isolated from hospital patients. J. Med. Microbiol. 3: 125–136.

    Article  CAS  Google Scholar 

  • Gadd G. M. & A. J. Griffiths, 1978. Microorganisms and heavy metal toxicity. Microb. Ecol. 4: 303–317.

    Article  CAS  Google Scholar 

  • Foster T. J. 1983. Plasmid-edetermined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361–409.

    CAS  Google Scholar 

  • Higham D. P., P. J. Sadler & M. D. Schawen, 1984. Cadmium resistant Pseudomonas putida synthesizes novel cadmium binding proteins. Science. 225: 1043–1046.

    Article  CAS  Google Scholar 

  • Hubert, J. J. 1980, Bioassay. Kendall/Hunt Publishing Co., Toronto, pp. 1–164.

    Google Scholar 

  • Hidemitsu S. P.-H., M. Nishimoto & N. Imura, 1981.Possible role of membrane proteins in mercury resistance of Enterobacter aerogenes. Arch. Mikrobiol. 130: 93–95.

    Google Scholar 

  • Laddaga R. A. & S. Silver, 1985. Cadmium uptake in Escherichia coli K12. J. Bact. 162: 1100–1105.

    CAS  Google Scholar 

  • Liu, D. & B. J. Dutka (eds.) 1984. Toxicity Screening Procedures Using Bacterial Systems. Marcel Dekker, Inc., New York, pp. 1–476.

    Google Scholar 

  • Macaskie L. E. & A. C. R. Dean, 1984. Cadmium accumulation by a Citrobacter sp. J. Gen. Microbiol. 130: 53–62.

    CAS  Google Scholar 

  • McEntee J. D., J. R. Woodrow, & A. V. Quirk, 1986. Investigation of cadmium resistance in an Alcaligenes sp. Appl. Envir. Microbiol. 51: 575–520.

    Google Scholar 

  • Mobley H. L. T. & B. P. Rosen, 1982. Energetics of plasmid- mediated arsenate resistance in Escherichia coli. Proc. Natn. Acad. Sei. U.S.A. 79: 6119–6122.

    Article  CAS  Google Scholar 

  • Novick R. P. & C. Roth, 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bact. 95: 1335–1342.

    CAS  Google Scholar 

  • Osborne, F. H. & H. L. Ehrlich, 1976. Oxidation of arsenite by a soil isolate ofAlcaligenes. J. Appl. Bacteriol. 41: 295–305.

    Article  CAS  Google Scholar 

  • Robinson J. B. & O. H. Tuovinen, 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical and genetic analyses. Microbiol. Rev. 48: 95–124.

    CAS  Google Scholar 

  • Silver S. & D. Keach, 1982. Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc. Natn. Acad. Sei. U.S.A. 79: 6114–6118.

    Article  CAS  Google Scholar 

  • Silver S., B. P. Rosen & T. K. Misra, 1986. DNA sequencing analysis of mercuric and arsenic resistance operons of Plasmids from Gram-negative and Gram-positive bacteria. Fifth International Symposium on the Genetics of Industrial Microorganisms. Zagreb, Pliva. pp. 357–371.

    Google Scholar 

  • Tezuka T. & K. Tonomura, 1978. Purification and properties of a second enzyme catalyzing the splitting of carbon-mercury linkages from mercury resistant Pseudomonas K-62. J. Bact. 135: 138–143.

    CAS  Google Scholar 

  • Trevors J. T., K. M. Oddie & B. H. Belliveau, 1985. Metal resistance in bacteria. FEMS Microbiol. Revs. 32: 39–54.

    Article  CAS  Google Scholar 

  • Trevors J. T., 1986. Mercury methylation by bacteria. J. Basic Microbiol. 26: 499–504.

    Article  CAS  Google Scholar 

  • Trevors J. T., 1986. Mercury resistant bacteria isolated from sediment. Bull. Envir. Contam. Toxicol. 36: 405–411.

    Article  CAS  Google Scholar 

  • Trevors J. T., G. W. Stratton & G. M. Gadd, 1986. Cadmium transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol. 32: 447–464.

    Article  CAS  Google Scholar 

  • Tynecka Z., Z. Gos & J. Jajac, 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bact. 147: 313–319.

    CAS  Google Scholar 

  • Williams, J. W. & S. Silver, 1984. Bacterial resistance and detoxification of heavy metals. Enz. Microb. Technol. 6: 530–537.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Munawar G. Dixon C. I. Mayfield T. Reynoldson M. H. Sadar

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Trevors, J.T. (1989). The role of microbial metal resistance and detoxification mechanisms in environmental bioassay research. In: Munawar, M., Dixon, G., Mayfield, C.I., Reynoldson, T., Sadar, M.H. (eds) Environmental Bioassay Techniques and their Application. Developments in Hydrobiology, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1896-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1896-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7346-2

  • Online ISBN: 978-94-009-1896-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics