Skip to main content

Part of the book series: Fatigue and Fracture ((FAAF,volume 3))

  • 160 Accesses

Abstract

Solutions to problems in metal forming are usually based on the theory of plasticity assuming that the solid is rigid-ideal-plastic, elastic-ideal-plastic or rigid-plastic-hardening where creep is not taken into account. The influence of creep becomes essential when metal is deformed at high temperatures and stresses even for a relatively short-time duration of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. HENCKY, H., Zeitschr. Angew. Math, und Mech.,Vol. 5, 1925, p. 115.

    MATH  Google Scholar 

  2. ISHLINSKI, A.Yu., Prikladnaja Matematika i Mehanika, Vol. VII, 1943, p. 226.

    Google Scholar 

  3. TARNOVSKI, I.Ja., POZDEEV, A.A., BAAKASHVILI, VS., MEANDROV, L.V., TARNOVSKI, V.I. and HASIN, G A., Resistance to Deformation and Plasticity of Steel at High Temperatures, Sabchota Sakartvelo, Tbilisi, 1970, p. 173.

    Google Scholar 

  4. POZDEEV, AA, TARNOVSKI, V.I., EREMEEV, V.I. and BAAKASHVILI, VS., Application of Creep Theory to Metal Forming, Metallurgia, Moscow, 1973, p. 39.

    Google Scholar 

  5. IUUKOVICH, B.M., BAAKASHVILI, V.S. and BEDINEJSHVILI, R.V., Theoretical Bases of Plastic Metal Working Sabchota Sakartvelo, Tbilisi, 1979, p. 560.

    Google Scholar 

  6. RABOTNOV, Yu.N., Creep of Structure Elements, Nauka, Moscow, 1966, p. 212, 223.

    Google Scholar 

  7. MALININ, N.N., Applied Theory of Plasticity and Creep, Mashinostroenie, Moscow, 1975, p. 267.

    Google Scholar 

  8. MALININ, N.N., Creep Calculations of Mechanical Engineering Structure Elements, Moscow, 1981, p. 24.

    Google Scholar 

  9. DAVENPORT, C.C., J. Appl. Mech., Vol. 5,1938, p. A-55.

    Google Scholar 

  10. KACHANOV, L.M., Creep Theory, Fitzmagiz, Moscow, 1960, p. 39.

    Google Scholar 

  11. LUDVIK, P., Elements of Technological Mechanics, Verlag von J. Springer, 1909, p. 44.

    Google Scholar 

  12. NADAI, A., The Influence of Time upon Creep, The Hypberbolic Sine Creep Law, in Stephen Timoshenko Anniversary Volume, D.H. Young, ed., Macmillan, London, 1938, p. 165.

    Google Scholar 

  13. SHESTERIKOV, SA. Izvestija A.N. SSSR Otdelenie Tehnickeshik Nauk., Vol. 2, 1957, p. 122.

    Google Scholar 

  14. GRABSKI, M.W., Structural Superplasticity of Metals, Slask, Katowice, 1973, p. 22.

    Google Scholar 

  15. SMIRNOV, O.M., Plastic Metal Working in Superplastic Condition, Mashinostroenie, Moscow, 1979, Vol. 17, p. 126.

    Google Scholar 

  16. ZIUZIN, V.I., BROVMAN, MJa and MELNIKOV, A.F., Resistance to Deformation of Steels at Hot Rolling, Metallurgija, Moscow, 1964, p. 211.

    Google Scholar 

  17. TRETJAKOV, A.V. and ZIUZIN, V.I., Mechanical Properties of Metals and Alloys at Plastic Working, Metallurgija, Moscow, 1973, p. 25.

    Google Scholar 

  18. RABOTNOV, Yu.N. and MILEIKO, S.T., Short-Time Creep, Nauka, Moscow, 1970, p. 32.

    Google Scholar 

  19. MALININ, N.N., Arch. Mech., Vol. 24, 1972, p. 439.

    Google Scholar 

  20. MALININ, N.N., Creep in Metal Working, in Teoretichna i Prilozna Mehanika, Kniga 2, Vtori Kongress, Varna, G. Brankov, ed., Izdatelstvo na Blgarskata Akademija na Naukite, Sofia, 1976, p. 143.

    Google Scholar 

  21. MALININ, N.N., Mechanics of Creep in Metal Forming IUTAM Symposium, Tutzin F.R.G., (1978), H. Lippmann, ed., Springer-Verlag, Berlin, 1979, p. 318.

    Google Scholar 

  22. MALININ, N.N., Creep in Metal Working, in Teoretichna i Prilozna Mehanika. Kniga I. Chetvrti Kongress, Varna (1981), G. Brankov, ed., Izdatelstvo na Blgarskate Akademija na Naukite, Sofia, 1981, p. 437.

    Google Scholar 

  23. MALININ, N.N., Izvestija Vuzov. Mashinostroenie, Vol. 5, 1982, p. 112.

    Google Scholar 

  24. ZIENKIEWICZ, O.C. and GODBOLE, P.N., Int. J. Num. Meth. Eng., Vol. 8, 1974, p. 3.

    MATH  Google Scholar 

  25. CRISTESCU, N., Int. J. Mech. Sci., Vol. 17, 1975, p. 125.

    Article  Google Scholar 

  26. SEGAL, V.M., Technological Problems of Theory of Plasticity, Nauka i Tehnika, Minsk, 1977, p.:207.

    Google Scholar 

  27. GUN, G.Ja., Theoretical Bases of Plastic Metal Working Theory of Plasticity, Metallurgija, Moscow, 1980, p. 373.

    Google Scholar 

  28. MALININ, N.N. and SHIRSHOV, A A., Izvestija Vuzov. Mashinostroenie, Vol. 2, 1978, p. 145.

    Google Scholar 

  29. MALININ, N.N. and ROMANOV, K.I., Stability of Material in Hot Forming, in Proceedings of 4th International Conference on Production Engineering Tokyo (1980), H. Kudo, ed., Jap. Soc. Tech. Plast., 1981, p. 172.

    Google Scholar 

  30. MALININ, N.N. and ROMANOV, K.I., Mashinovedenie, Vol. 4, 1982, p. 98.

    Google Scholar 

  31. MALININ, N.N., Deformation of Heated Thin-Walled Tubes, in Raschety na Prochnost. Vyp. 19, N.D. Tarabasov, ed., Mashinostroenie, Moscow, 1982, p. 102.

    Google Scholar 

  32. HOLT, D.L., Int. J. Mech. Sci., Vol. 12, 1970, p. 491.

    Article  Google Scholar 

  33. STOROZEV, M.V. and POPOV, EA., Theory of Plastic Metal Working, Mashinostroenie, Moscow, 1977, p. 321.

    Google Scholar 

  34. TSELIKOV, A.I., NIKITIN, G.S. and ROKOTYAN, S.E., Theory of Lengthwise Rolling, Metallurgija, Moscow, 1980, p. 46.

    Google Scholar 

  35. JOHNSON, W. and MELLOR, P.B., Engineering Plasticity, Van Nostrand Reinhold Company, London, 1973, pp. 338, 350.

    Google Scholar 

  36. MALININ, N.N., Izvestija Vuzov. Mashinostroenie, Vol. 12, 1977, p. 119.

    Google Scholar 

  37. MALININ, N.N. and ROMANOV, K.I., Izvestija Vuzov. Mashinostroenie, Vol. 7, 1977, p. 104.

    Google Scholar 

  38. TSELKOV, A J., Rolling Mills, Metallurgizdat, Moscow, 1946, p. 560.

    Google Scholar 

  39. UNKSOV, E.P., Engineering Theory of Plasticity, Mashigz, Moscow, 1959, p. 143.

    Google Scholar 

  40. BOBROVNIKOVA, N.N., Izvestija Vuzov. Mashinostroenie, Vol. 5, 1973, p. 130.

    Google Scholar 

  41. BOBROVNIKOVA, N.N., Izvestija Vuzov. Mashinostroenie, Vol. 1, 1974, p. 133.

    Google Scholar 

  42. ROMANOV, K.I. and KALMYKOVA, N.V, Izvestija Vuzov. Mashinostroenie, Vol. 9, 1982, p. 9.

    Google Scholar 

  43. MALININ, N.N. and ROMANOV, K.I., Izvestija Vuzov. Mashinostroenie, Vol. 8, 1977, p. 127.

    Google Scholar 

  44. ROMANOV, K.I., Mashinovedenie, Vol. 5, 1978, p. 79.

    Google Scholar 

  45. GAVRJUSHINA, N.T., Izvestija Vuzov. Mashinostroenie, Vol. 3, 1982, p. 29.

    Google Scholar 

  46. ZIENKIEWICZ, O.C., The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971, p. 16.

    MATH  Google Scholar 

  47. ROMANOV, K.I., Izvestija Vuzov. Mashinostroenie, Vol. 6, 1977, p. 147.

    Google Scholar 

  48. KACHANOV, L.M., Bases of Fracture Mechanics, Nauka, Moscow, 1974, p. 138.

    Google Scholar 

  49. MELNINKOV, G.P. and SHESTERIKOV, SA., Zurnal Prikladnoi Mehaniki i Technicheskoi Fiziki, Vol. 2, 1972, p. 91.

    Google Scholar 

  50. LOKOSCHENKO, A.M. and SHESTERIKOV, S.A., Zurnal Prikladnoi Mehaniki i Technicheskoi Fiziki, Vol. 3, 1980, p. 155.

    Google Scholar 

  51. LOKOSCHENKO, A.M. and SHESTERIKOV, S A., Zurnal Prikladnoi Mehaniki i Technicheskoi Fiziki, Vol. 1, 1982, p. 160.

    Google Scholar 

  52. SOSNIN, O.V. and TORSHENOV, M.G., Problemy Prochnosti, Vol. 7, 1972, p. 55.

    Google Scholar 

  53. SOSNIN, O.V., GOREV, B.V. and NIKITENKO, A.F., Problemy Prochenosti, Vol. 11, 1976, p. 3.

    Google Scholar 

  54. LAZARENKO, E.S., MALININ, N.N. and ROMANOV, K.I., Izvestija Vuzov. Machinostroenie, Vol. 3, p. 25, Vol. 7, p. 19.

    Google Scholar 

  55. DRUCKER, D., J. Appl. Mech., Vol. 26, 1959, p. 101.

    MathSciNet  MATH  Google Scholar 

  56. DRUCKER, D., J. de Mec., Vol. 3, 1964, p. 235.

    MathSciNet  Google Scholar 

  57. MALININ, N.N. and ROMANOV, K.I., Stability of Tension of a Bar in Creep Condition, in Raschety na Prochnost, Vyp. 21, D.N. Tarabasov, ed., Mashinostroenie, Moscow, 1980, p. 104.

    Google Scholar 

  58. MALININ, N.N. and ROMANOV, K.I., Izvestija A.N. SSSR Mehanika Twerdogo Tela, Vol. 1, 1981, p. 133.

    Google Scholar 

  59. ROMANOV, K.I., Mashinovedenie, Vol. 5, 1980, p. 75.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Malinin, N.N. (1990). Creep theories in metal forming. In: Sih, G.C., Ishlinsky, A.J., Mileiko, S.T. (eds) Plasticity and failure behavior of solids. Fatigue and Fracture, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1866-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1866-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7332-5

  • Online ISBN: 978-94-009-1866-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics