Skip to main content

Isozymes as Markers for Studying and Manipulating Quantitative Traits

  • Chapter
Isozymes in Plant Biology

Abstract

Many plant characteristics (e.g., grain and forage yield, time of flowering, stress tolerance) show continuous variation. This usually implies that the inheritance of such traits is complex (quantitative) and probably involves the collective effects of numerous genetic factors. Classically, the activity of these factors has been characterized en masse, using biometrical procedures, and it has usually not been possible to isolate and measure the individual and interactive parameters of single factors (genes) or segments of chromosomes. Identification, mapping, and examination of individual genes affecting quantitative traits should provide knowledge concerning the organization of genomes and insight into the relative contribution of “major” and “minor” genes to such complexly inherited traits. With a better understanding of the inheritance of such traits, it should be possible to develop new methods for enhancing plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Alland R. W., A. L. Kahler, and B. S. Weir. 1972. The effect of selection on esterase allozymes in a barley population. Genetics 72: 489–503.

    Google Scholar 

  • Breese. R. L., and K. Mather. 1957. The organization of polygenic activity within a chromosome in Drosophila. I. Hair characters. Heredity 11: 373–395.

    Article  Google Scholar 

  • Breese. R. L., and K. Mather. 1960. The organization of polygenic activity within a chromosome in Drosophifa. II. Viability. Heredity 14: 375–400.

    Article  Google Scholar 

  • Clegg, M. T., and R. W. Allard. 1972. Patterns of genetic differentiation In the slender wild oat species Avena harbata. Proc. Natl. Acad. Sci. USA 09: 1820–1824.

    Article  Google Scholar 

  • Conkle, M.T. 1981. Isozyme variation and linkage in six conifer species. In M.T. Conkle [ed.], Isozymes of North American forest trees and forest insects, PSW-48, 11–17. USDA Gen. Tech. Rep.

    Google Scholar 

  • Edwards, M. D., C. W. Stuber, and J. F. Wendel. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, distribution, and types of gene action. Genetics 116: 113–125.

    PubMed  CAS  Google Scholar 

  • Everson, E. H., and C. W. Schaller. 1955. The genetics of yield differences associated with awn barbing in the barley hybrid (Lion x Atlas10) x Atlas. Agron. J. 47: 276–280.

    Article  Google Scholar 

  • Frei, O. M., C. W. Stuber, and M. M. Goodman. 1986a. Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop Sci. 26: 37–42.

    Article  Google Scholar 

  • Gonella, J. A., and P. A. Peterson. 1978. Isozyme relatcdncss of inbred lines of maize and performance of their hybrids. Maydica 23: 55–61.

    CAS  Google Scholar 

  • Goodman. M. M., and C. W. Stuber. 1983. Maize. In S. D. Tanksley and T. J. Orton [eds.]. Isozymes in plant genetics and breeding. Part B, 1–33. Elsevier, Amsterdam.

    Google Scholar 

  • Goodman, M. M., and C. W. Stuber, K. Newton, and H. H. Weissinger, 1980. Linkage relationships of 19 isozyme loci inmaize. Genetics 96: 697–710.

    PubMed  CAS  Google Scholar 

  • Hadjinov, M. I., V. S. Scherbak, N. I. Benko. V. P. Gusev. T. B. Sukhorzheuskaya. and L. P. Voronova. 1982. Interrelationships between isozyme diversity and combining ability in maize lines. Maydica 27: 135–149.

    Google Scholar 

  • Hamrick. J. L., and R. W. Allard. 1975. Correlations between quantitative characters and enzyme genotypes in Avena barbafa. Evolution 29: 438–442.

    Article  Google Scholar 

  • Hanson, W. D. 1959. The theoretical distribution of lengths of parental gene blocks in the gametes of an Fj individual. Genetics 44: 197–209.

    PubMed  CAS  Google Scholar 

  • Hart, G. E. 1983. Hexaploid wheat (Triticum aestivum L. em Thell) In S. D. Tanksley and T. J. Orton [eds.], Isozymes in plant genetics and breeding. Part B, 35–56. Elsevier. Amsterdam.

    Google Scholar 

  • Heidrich-Sobrinho, E., and A. R. Cordeiro. 1975. Codominant isoenzymic alleles as markers of genetic diversity correlated with heterosis in maize (Zea mays L.). Theor. Appl. Genet. 46: 197–199.

    Article  CAS  Google Scholar 

  • Helentjaris. T., G. King, M. Slocum, C. Siedenstang, and S. Wegman. 1985. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Pl. Mol. Biol. 5: 109–118.

    Article  CAS  Google Scholar 

  • Hunter, R. B., and L. W. Kannenberg. 1971. Isozyme characterization of corn (Zea mays L.) Inbreds and its relation to single cross hybrid performance. Canad. J. Genet. Cytol. 13: 649–655.

    Google Scholar 

  • Jayakar, S. D. 1970. On the detection and estimation of linkage between a locus influencing a quantitative character and a marker locus. Biometrics 26: 451–464.

    Article  PubMed  CAS  Google Scholar 

  • Kahler, A. L. 1985. Associations between enzyme marker loci and agronomic traits in maize. Proceedings of 40th Annual Corn and Sorghum Research Conference. American Seed Trade Association 40: 66–09.

    Google Scholar 

  • Lamkey, K. R.. A. R. Hallauer, and A. L. Kahler. 1987. Allelic differences at enzyme loci and hybrid performance in maize. J. Heredity 78: 231–234.

    Google Scholar 

  • Law, C. N. 1967. The location of factors controlling a number of quantitative characters in wheat. Genetics 56: 445–461.

    PubMed  CAS  Google Scholar 

  • Lebowitz. R. J., M. Soller, and J. S. Beckmann. 1987. Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor. Appl. Genet. 73: 556–562.

    Article  Google Scholar 

  • Mather, K.. and J. L. Jinks. 1971. Biometrical genetics. Cornell University Press, Ithaca. New York.

    Google Scholar 

  • McMillan, I., and A. Robertson. 1974. The power of methods for detection of major genes affecting quantitative characters. Heredity 32: 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, J. M. 1933. A contribution to the theory of quantitative character inheritance. Hereditas 18: 245–261.

    Article  Google Scholar 

  • Rivin, C. J., E. A. Zimmer. C. A. Cullis. V. Walbot, T. Huynh, and R. W. Davis. 1983. Evaluation of genomic variability at the nucleic acid level. Plant Mol. Biol. Reporter 1: 9–16.

    Article  CAS  Google Scholar 

  • Sax, K. 1923. The association of size differences with seed coat pattern, and pigmentation in Phaseolus vulgaris. Genetics 8: 552–560.

    PubMed  CAS  Google Scholar 

  • Soller, M., and J. S. Bcckmann. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.

    Article  Google Scholar 

  • Soller, M., and J. Plotkin-Hazan. 1977. The use ol marker alleles for the introgression of linked quantita¬tive alleles. Theor. Appl. Genet. 51: 133–137.

    Google Scholar 

  • Spickett, S. G., and J. M. Thoday. 1966. Regular responses to selection 3: interaction between located polygenes. Genet. Res. 7: 96–121.

    Article  PubMed  CAS  Google Scholar 

  • Stuber, C. W., and M. D. Edwards. 1986. Genotypic selection for improvement of quantitative traits in com using molecular marker loci. Proceedings of 41st Annual Corn and Sorghum Research Conference, American Seed Trade Assoc. 41: 70–63.

    Google Scholar 

  • Stuber, C. W., M. D. Edwards. and J. F. Wendel. 1987. Molecular marker-facilitated investigations of quantitative loci in maize: II. Factors influencing yield and its component trails. Crop Sci. 27: 639–648.

    Article  Google Scholar 

  • Stuber, C. W., and M. M. Goodman. 1983. Allozyma genotypes for popular and historically important inbred lines of corn. U.S. Dept. of Agriculture. Agric. Res. Serv., Southern Series No. 16.

    Google Scholar 

  • Stuber, C. W., M. M. Goodman. and R. H. Moll. 1982. Improvement of yield and car number resulting from selection at allozyme loci in a maize population. Crop Sci. 22: 737–740.

    Article  Google Scholar 

  • Stuber, C. W., and R. H. Moll. 1972. Frequency changes of isozyme alleles in a selection experiment for grain yield in maize (Zea mays L.). Crop Sci. 12: 337–340.

    Article  CAS  Google Scholar 

  • Stuber, C. W., and R. H. Moll. M.M. Goodman, H. E. Schaffer. and B. S. Weir. 1980. Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.). Genetics 95: 225–236.

    PubMed  CAS  Google Scholar 

  • Tanksley. S. D. 1983. Molecular markers in plant breeding. Plant Mol. Biol- Reporter 1: 3–8.

    Article  CAS  Google Scholar 

  • Tanksley, S. D., H. Medina-Filho. and C. M. Rick. 1982. Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49: 11–25.

    Article  Google Scholar 

  • Tanksley, S. D., and C. M. Rick. 1960. Isozyme linkage map of the tomato: applications in genetics and breeding. Theor. Appl. Genet. 57: 161–170.

    Google Scholar 

  • Thoday, J. M. 1961. Location of polygenes. Mature 191: 368–370.

    Google Scholar 

  • Vallejos, C. E.. and S. D. Tbnksley. 1983. Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor. Appl. Genet. 66: 241–247.

    Article  Google Scholar 

  • Weller. J. 1983. Linkage relationships between quantitative trait loci in an interspecific cross of tomato (L. pimpinellifolium x L. esculentum). Ph.D. thesis ( English summary) Hebrew University of Jerusalem, Israel.

    Google Scholar 

  • Wendel, J. F., M. M. Goodman, and C. W. Stuber. 1985. Mapping data for 34 isozyme loci currently being studied. Maize Genet. Coop. News letter 59: 90.

    Google Scholar 

  • Wendel, J. F., M. M. Goodman, and C. W. Stuber. and J. B. Beckett. 1988. New isozyme systems for maize (Zea mays L.) aconitate hydratasc, adenylate kinase. NADH dehydrogenase, and shikimate dehydrogenase. Biochem. Genet. 26: 421–145.

    PubMed  CAS  Google Scholar 

  • Wendel, J. F., C. W. Stubcr. M. D. Edwards, and M. M. Goodman. 1986. Duplicated chromosome seg-ments in maize (Zea mays L.J: further evidence from hexokinase isozymes. Theor. Appl. Genet. 72: 178–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Dioscorides Press

About this chapter

Cite this chapter

Stuber, C.W. (1989). Isozymes as Markers for Studying and Manipulating Quantitative Traits. In: Soltis, D.E., Soltis, P.S., Dudley, T.R. (eds) Isozymes in Plant Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1840-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1840-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7321-9

  • Online ISBN: 978-94-009-1840-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics