Skip to main content

LCPUFA requirements for preterm infants: neurophysiological studies

  • Chapter
Recent Developments in Infant Nutrition

Part of the book series: Tenth Nutricia Symposium ((NUSY,volume 9))

Abstract

Although the need for specific components as a prerequisite for the proper growth and development of animals and possibly humans was introduced in the 1930s (1), essential fatty acids (EFA) were considered of marginal importance until the 1960s when signs of clinical deficiency became apparent in infants fed skim-milk-based formula and in those receiving lipid-free parenteral nutrition (2–5). During the past decade, it has become generally accepted that n-6 as well as n-3 fatty acids play a key role in perinatal nutrition, especially for the developing CNS. Clinical manifestations of EFA deficiency disappear after the administration of diets that provide 2% or more of the calories as linoleic acid (LA, 18:2 n-6) (2–7). More subtle clinical symptoms appear in n-3 EFA deficiency: these include skin changes unresponsive to LA supplementation, abnormal visual function and peripheral neuropathy (8). Nervous system manifestations are probably caused by an insufficient supply of docosahexaenoic acid (DHA, 22:6 n-3), the metabolic derivative of α-linolenic acid (ALA, 18:3 n-3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AA:

arachidonic acid, 20:4 n-6

ALA:

α-linolenic acid, 18:3 n-3

ANS:

autonomic nervous system

AS:

active sleep

CNS:

central nervous system

DHA:

docosahexaenoic acid, 22:6 n-3

DPA:

docosapentaenoic acid, 22:5 n-6

EEG:

electroencephalogram

EFA:

essential fatty acid

EPA:

eicosapentaenoic acid, 20:5 n-3

ERG:

electroretinogram

HF:

variability of the high frequency

HM:

human milk

HRV:

heart rate variability

IS:

indeterminate sleep

LA:

linoleic acid, 18:2 n-6

LCPUFA:

long-chain polyunsaturated fatty acid

LF:

variability of the low frequency

MAR:

minimal angle of resolution

PNS:

parasympathetic nervous system

PUFA:

polyunsaturated fatty acid

QS:

quiet sleep

RBC:

red blood cell

REM:

rapid eye movements

SNS:

sympathetic nervous system

SWS:

slow-wave sleep

TPN:

total parenteral nutrition

VEP:

visual evoked potential

References

  1. Burr GO, Burr MM 1929 A new deficiency disease produced by rigid exclusion of fat from the diet. J Biol Chem 82:345–367

    CAS  Google Scholar 

  2. Hansen AE, Wiese HF, Boelsche AN, Haggard ME, Adam DJD, Davis H 1963 Role of linoleic acid in infant nutrition: clinical and chemical study of 428 infants fed on milk mixtures varying in kind and amount of fat. Pediatrics 31:171–192

    Google Scholar 

  3. Caldwell MD, Johnsson HT, Othersen HB 1972 Essential fatty acid deficiency in an infant receiving prolonged parenteral alimentation. J Pediatr 81:894–898

    Article  PubMed  CAS  Google Scholar 

  4. White HB, Turner MD, Turner AC, Miller RC 1973 Blood lipid alterations in infants receiving intravenous fat-free alimentation. J Pediatr 83:305–313

    Article  PubMed  Google Scholar 

  5. Paulsrud JR, Pensler L, Whitten CF, Stewart S, Holman KT 1972 Essential fatty acid deficiency in infants induced by fat-free intravenous feeding. Am J Clin Nutr 25:897–904

    PubMed  CAS  Google Scholar 

  6. Friedman Z 1980 Essential fatty acids revisited. Am J Dis Child 134:397–408

    PubMed  CAS  Google Scholar 

  7. Friedman Z, Shochat SJ, Maisels MJ, Marks KH, Lamberth EL 1976 Correction of essential fatty acid deficiency in newborn infants by cutaneous application of sunflower seed oil. Pediatrics 58: 650–654

    PubMed  CAS  Google Scholar 

  8. Holman RT, Johnson SB, Hatch TF 1982 A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 35:617–623

    PubMed  CAS  Google Scholar 

  9. Farquharson J, Cockburn F, Patrick WA, Jamieson EC, Logan RW 1992 Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet 340:810–813

    Article  PubMed  CAS  Google Scholar 

  10. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA 1994 Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 60:189–194

    PubMed  CAS  Google Scholar 

  11. Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G 1989 The effects of dietary alfa-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. JNutr 119:1880–1892

    CAS  Google Scholar 

  12. Wheeler TG, Benolken RM, Anderson RE 1975 Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312–1314

    Article  PubMed  CAS  Google Scholar 

  13. Neuringer M, Connor WE, van Petten C, van Barstad L 1984 Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 73:272–276

    Article  PubMed  CAS  Google Scholar 

  14. Stubbs CD, Smith AD 1984 The modification of mammalian membrane polyunsaturated fatty acid composition in relation to fluidity and function. Biochim Biophys Acta 779:89–137

    PubMed  CAS  Google Scholar 

  15. Lee AG, East JM, Froud RJ 1986 Are essential fatty acids essential for membrane function? Prog Lipid Res 25:41–46

    Article  PubMed  CAS  Google Scholar 

  16. Salem N Jr, Shingu T, Kim HY, Hullin F, Bougnoux P, Karanian JW 1988 Specialization in membrane structure and metabolism with respect to polyunsaturated lipids. In: Karnovsky ML, Leaf A, Bollis LC (eds) Biological Membranes: Aberrations in Membrane Structure and Function. Alan R. Liss Inc., New York, pp 319–333

    Google Scholar 

  17. Treen M, Uauy RD, Jameson D, Thomas V, Hoffman DR 1992 Effect of docosahexaenoic acid on membrane fluidity and function in intact cultured Y-79 retinoblastoma cells. Arch Biochem Biophys 294:564–570

    Article  PubMed  CAS  Google Scholar 

  18. Yorek MA, Bohnker RR, Dudley DT, Spector AA 1984 Comparative utilization of N-3 polyunsaturated fatty acids by cultured human Y-79 retinoblastoma cells. Biochim Biophys Acta 795: 277–285

    PubMed  CAS  Google Scholar 

  19. Ahmad SN, Alam SQ, Alam BA 1990 Influence of dietary omega-3 fatty acids on transmembrane signalling in rat submandibular salivary gland. Cell Sign 2:29–41

    Article  CAS  Google Scholar 

  20. Slater S J, Kelly MK, Taddeo FJ, Ho C, Rubin E, Stubbs CD 1994 The modulation of protein kinase C activity by membrane lipid bilayer structure. J Biol Chem 269:4866–4871

    PubMed  CAS  Google Scholar 

  21. Lin DS, Connor WE, Anderson GJ, Neuringer M 1990 The effects of dietary n-3 fatty acids on phospholipid molecular species of monkey brain. J Neurochem 55:1200–1207

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell DC, Litman BJ 1995 A role for phospholipid polyunsaturation in modulating membrane protein function. Proceedings of the 2nd International Congress of the ISSFAL (International Society for the Study of Fatty Acids and Lipids). NIH, Bethesda, MD, June 7–16

    Google Scholar 

  23. Love JA, Saurn WR, McGee R 1985 The effects of exposure to exogenous fatty acids and membrane fatty acid modification on the electrical properties of NG108–15 cells. Cell Mol Neurobiol 5:333–352

    Article  PubMed  CAS  Google Scholar 

  24. Holh CM, Rosen P 1987 The role of arachidonic acid in rat heart cell metabolism. Biochim Biophys Acta 921:356–363

    Google Scholar 

  25. Caster WO, Ahn P 1963 Electrocardiographic notching in rats deficient in EFA. Science 139: 1213

    Article  PubMed  CAS  Google Scholar 

  26. Charnock JS 1991 Anti-arrhythmic effects of fish oil. In: Simopoulos AP (ed) Health Effects of 03c93 Polyunsaturated Fatty Acids in Seafoods. Karger, Basel, pp 278–291

    Google Scholar 

  27. Abeywardena MY, McLennan PL, Charnock JS 1987 Diet and cardiac arrhythmia: involvement of eicosanoids. In: Lands WEM (ed) Proceedings of the AOCS Short Course of Polyunsaturated Fatty Acids and Eicosanoids. American Oil Chemists’ Society, Champaign, IL, pp 62–64

    Google Scholar 

  28. Hallaq H, Smith TW, Leaf A 1992 Modulation of dihydropyridine-sensitive calcium channels in hearts cells by fish oil fatty acids. Pro Natl Acad Sci USA 89:1760–1764

    Article  CAS  Google Scholar 

  29. Kang JX, Xiao YF, Leaf A 1995 Free, long-chain polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc Natl Acad Sci USA 92:3997–4001

    Article  PubMed  CAS  Google Scholar 

  30. Evers AS, Elliott WJ, Lefkowith JB, Needleman P 1986 Manipulation of rat brain fatty acid composition alters volatile anesthetic potency. J Clin Invest 77:1028–1033

    Article  PubMed  CAS  Google Scholar 

  31. Bazan NG 1989 The metabolism of omega-3 polyunsaturated fatty acids in the eye: The possible role of docosahexaenoic acid and docosanoids in retinal physiology and ocular pathology. Prog Clin Biol Res 312:95–112

    PubMed  CAS  Google Scholar 

  32. Danguir J, Nicolaidis S 1980 Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis. Am J Physiol 238:E223-E230

    PubMed  CAS  Google Scholar 

  33. Danguir J, Nicolaidis S 1984 Chronic intracerebroventricular infusion of insulin causes selective increases of slow wave sleep in rats. Brain Res 306:97–106

    Article  PubMed  CAS  Google Scholar 

  34. Dewasmes G, Cohen-Adad F, Koubi H, Le Maho Y 1984 Sleep changes in long-term fasting geese in relation to lipid and protein metabolism. Am J Physiol 247:R663–R671

    PubMed  CAS  Google Scholar 

  35. Dewasmes G, Buchet C, Geloen A, Le Maho Y 1989 Sleep changes in emperor penguins during fasting. Am J Physiol 256:R476–R480

    PubMed  CAS  Google Scholar 

  36. Rigatto H 1992 Maturation of breathing. Clin Perinatol 19:739–756

    PubMed  CAS  Google Scholar 

  37. Coons S, Guilleminault C 1982 The development of sleep-wake patterns and non-rapid eye movement sleep stages during the first six months of life in normal infants. Pediatrics 69:793–798

    PubMed  CAS  Google Scholar 

  38. Fagioli I, Salzarolo P 1982 Sleep states development in the first year of life assessed through 24 hour recording. Early Hum Dev 6:215–228

    Article  PubMed  CAS  Google Scholar 

  39. Anders TF, Keener M 1985 Developmental course of nighttime sleep-wake patterns in full term and premature infants during the first year of life. Sleep 8:173–192

    PubMed  CAS  Google Scholar 

  40. Curzi-Dascalova L, Peirano P, Morel-Kahn F 1988 Development of sleep states in normal premature and full term newborns. Dev Psychobiol 21:431–444

    Article  PubMed  CAS  Google Scholar 

  41. Monod N, Guidasci S 1976 Sleep and brain malformation in the neonatal period. Neuropaediatrie 7:229–249

    Article  CAS  Google Scholar 

  42. Schulman CA 1969 Alterations of the sleep cycle in heroin-addicted and ‘suspect’ newborns. Neuropaediatrie 1:89–100

    Article  CAS  Google Scholar 

  43. Bhatia VP, Katiyar GP, Agarwal KN, Das TK, Dey PK 1980 Sleep cycle studies in babies of undernourished mothers. Arch Dis Child 55:134–138

    Article  PubMed  CAS  Google Scholar 

  44. Salzarulo P, Fagioli I, Salomon F, Ricour C 1982 Developmental trend of quiet sleep is altered by early human malnutrition and recovered by nutritional rehabilitation. Early Hum Dev 7:257–264

    Article  PubMed  CAS  Google Scholar 

  45. Peirano P, Fagioli I, Singh BB 1989 Effect of early human malnutrition on waking and sleep organization. Early Hum Dev 20:67–76

    Article  PubMed  CAS  Google Scholar 

  46. Peirano P, Fagioli I, Singh BB 1990 Quiet sleep and slow wave sleep in malnourished infants. Brain Dysfunct 3:80–83

    Google Scholar 

  47. Curzi-Dascalova I, Peirano P 1989 Sleep organisation in small-for-gestational age human neonates. Brain Dysfunct 2:45–54

    Google Scholar 

  48. Spassov L, Curzi-Dascalova L, Clairambault J, Kauffmann F, Eiselt M, Médigue C, Peirano P 1994 Heart rate and heart rate variability during sleep in small for gestational age newborns. Pediatr Res 35:500–505

    Article  PubMed  CAS  Google Scholar 

  49. Fagioli I, Baroncini P, Ricour C, Salzarulo P 1989 Decrease of slow-wave sleep in children with prolonged absence of essential lipids intake. Sleep 12:495–499

    PubMed  CAS  Google Scholar 

  50. Stothers JK, Warner RM 1977 Oxygen consumption and sleep state in the newborn. J Physiol (Lond) 269:57–58

    Google Scholar 

  51. Butte NF, Jensen CL, Moon JK, Glaze DG, Frost JD 1992 Sleep organization and energy expenditure of breast-fed and formula-fed infants. Pediatr Res 32:514–519

    Article  PubMed  CAS  Google Scholar 

  52. Butte NF, Smith EO, Garza C 1991 Heart rate of breast-fed and formula-fed infants. J Pediatr Gastroenterol Nutr 13:391–396

    Article  PubMed  CAS  Google Scholar 

  53. Porges SW 1992 Vagal tone: a physiologic marker of stress vulnerability. Pediatrics 90:498–504

    PubMed  CAS  Google Scholar 

  54. Curzi-Dascalova L, Clairambault J, Kauffmann C 1991 Cardiorespiratory variability and development of sleep state organization. In: Gaultier C, Escourrou P, Curzi-Dascalova L (eds) Sleep and Cardiorespiratory Control. John Libbey, London, pp 155–163

    Google Scholar 

  55. Schechtman VL, Harper RM, Kluge KA 1989 Development of heart rate variation over the first 6 months of life in normal infants. Pediatr Res 26:343–346

    Article  PubMed  CAS  Google Scholar 

  56. Kauffmann F, Cauchemez B 1991 Extraction of cardiorespiratory parameters. In: Gaultier C, Escourrou P, Curzi-Dascalova L (eds) Sleep and Cardiorespiratory Control. John Libbey, London, pp 105–112

    Google Scholar 

  57. Eiselt M, Curzi-Dascalova L, Clairambault J, Kauffmann F, Médigue C, Peirano P 1993 Heartrate variability in low-risk prematurely born infants reaching normal term: A comparison with full-term neonates. Early Hum Dev 32:183–195

    Article  PubMed  CAS  Google Scholar 

  58. Spassov L, Curzi-Dascalova L, Clairambault J, Kauffmann F, Biselt M, Médigue C, Peirano P 1994 Heart rate and heart rate variability during sleep in small-for-gestational age newborns. Pediatr Res 35:500–505

    Article  PubMed  CAS  Google Scholar 

  59. Curzi-Dascalova L, Spassov L, Eiselt M, Peirano P, Kauffmann F, Clairambault J, Médigue C 1994 Development of cardiorespiratory control and sleep in newborns. In: Cosmi AV, Renzo GC (eds) Current Progress in Perinatal Medicine. Parthenon, London, pp 303–308

    Google Scholar 

  60. Porges SW 1995 Cardiac vagal tone: A physiological index of stress. Neurosci Biobehav Rev 19:225–233

    Article  PubMed  CAS  Google Scholar 

  61. DiPetro JA, Larson KS, Porges SW 1987 Behavioral and heart rate pattern differences between breast-fed and bottle-fed neonates. Dev Psychol 23:467–474

    Article  Google Scholar 

  62. Zeskind PS, Marshall TR, Goff DM 1992 Rhythmic organization of heart rate in breast-fed and bottle-fed newborn infants. Early Dev Parent 1:79–87

    Article  Google Scholar 

  63. Granit R 1993 The components of the retinal action potential in mammals and their relation to the discharge of the optic nerve. J Physiol 77:207–239

    Google Scholar 

  64. Brown KT 1968 The electroretinogram; its components and their origins. Vision Res 8:633–637

    Article  PubMed  CAS  Google Scholar 

  65. Birch EE, Birch DG, Petrig B, Uauy R 1990 Retinal and cortical function of infants at 36 and 57 weeks post-conception. Clin Vision Sci 5:363–373

    Google Scholar 

  66. Marmor MF, Arden GB, Nilsson SEG, Zrenner E 1989 Standard for clinical electroretinography. Arch Ophthalmol 107:816–881

    Article  Google Scholar 

  67. Ogden TE 1973 The oscillatory waves of the primate electroretinogram. Vision Res 13:1059–1074

    Article  PubMed  CAS  Google Scholar 

  68. Naka KI, Rushton WAH 1966 S-potentials from luminosity units in the retina offish (Cyprinidae). J Physiol (Lond) 185:587–599

    CAS  Google Scholar 

  69. Uauy RD, Birch DG, Birch EE, Tyson JE, Hoffman DR 1990 Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res 28:485–492

    Article  PubMed  CAS  Google Scholar 

  70. Birch DG, Birch EE, Hoffman DR, Uauy R 1992 Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest Ophthalmol Vis Sci 33:2365–2376

    PubMed  CAS  Google Scholar 

  71. Hoffman DR, Uauy R 1992 Essentiality of dietary omega-3 fatty acids for premature infants: plasma and red blood cell fatty acid composition. Lipids 27:886–895

    Article  PubMed  CAS  Google Scholar 

  72. Birch EE 1989 Visual acuity testing in infants and young children. Ophthalmol Clin North Am 2:369–389

    Google Scholar 

  73. Uauy R, Birch E, Birch D, Peirano P 1992 Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J Pediatr 120:S168–S180

    Article  PubMed  CAS  Google Scholar 

  74. Sokol S, Hansen VC, Moskowitz A, Greenfield P, Towle VL 1983 Evoked potential and preferential looking estimates of visual acuity in pediatric patients. Ophthalmology 9:552–556

    Google Scholar 

  75. Norcia AM, Tyler CW 1985 Spatial frequency sweep VEP: Visual acuity during the first year of life. Vision Res 25:1399–1408

    Article  PubMed  CAS  Google Scholar 

  76. Birch EE, Birch DG, Hoffman DR, Uauy R 1992 Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci 33:3242–3253

    PubMed  CAS  Google Scholar 

  77. Uauy R, Hoffman DR, Birch EE, Birch DG, Jameson DM, Tyson J 1994 Safety and efficacy of omega-3 fatty acids in the nutrition of very low birth weight infants: soy oil and marine oil supplementation of formula. J Pediatr 124:612–620

    Article  PubMed  CAS  Google Scholar 

  78. Curzi-Dascalova L 1995 Développement du sommeil et des fonctions sous contrôle du système nerveux autonome chez les nouveau-nés prématurés et à terme. Arch Pédiatr 2:255–262

    Article  PubMed  CAS  Google Scholar 

  79. Hoppenbrouwers T, Hodgman J, Arakawa K, Geidel SA, Sternman MB 1988 Sleep and waking states in infancy: normative studies. Sleep 11:387–401

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Uauy, R., Peirano, P., Mena, P., Hoffman, D., Birch, D., Birch, E. (1996). LCPUFA requirements for preterm infants: neurophysiological studies. In: Bindels, J.G., Goedhart, A.C., Visser, H.K.A. (eds) Recent Developments in Infant Nutrition. Tenth Nutricia Symposium, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1790-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1790-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7298-4

  • Online ISBN: 978-94-009-1790-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics