Advertisement

Precision, Tolerance, and Consensus: Local Cultures in German and British Resistance Standards

  • Kathryn M. Olesko
Chapter
Part of the Archimedes book series (ARIM, volume 1)

Abstract

Standards, Witold Kula tells us, have social meaning.1 Bound to dimensions found in everyday life and labor, potently symbolizing the centralizing tendencies of authorities large and small, and setting guidelines for just practice in commerce and trade, standards are strategic loci on which converge several different dimensions of human behavior. But for Kula, that convergence is rich to the degree it occurs in the deeper past of the early modern period when anthropomorphic measures confined to local cultures dominated. In his view, matters changed following the introduction of the metric system at the end of the eighteenth century. Increased precision and accuracy in measurement expanded the geographic range of standards and diluted to the point of eliminating the subjective connotations and associations of standards found in more local cultures. Hence, for Kula, the metric system helped to destroy feudalism and instill modernizing tendencies. More precise standards became, in Kula’s opinion, one foundation for large-scale political unity, a conclusion shared by other historians.2

Keywords

Precision Measurement Constant Error Social Meaning Absolute Unit Measure Reform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. I am grateful for the assistance of Dr. Helmut Rohlfing of the Niedersächsische Staats- und Universitätsbibliothek and Dr. Regina Mahlke of the Staatsbibliothek zu Berlin-Preussischer Kulturbesitz, Haus Zwei. For their comments, I thank Larry Lagerstrom, Myles Jackson, Jed Buchwald and audiences at the Dibner Institute for the History of Science and Technology, Massachusetts Institute of Technology; the University of Oklahoma; and the History of Science Society. I would like to thank the National Science Foundation (DIR-9023476) and the National Endowment for the Humanities (RH-21005–91) for their support.Google Scholar
  2. 1.
    Witold Kula, Measures and Men (Princeton: Princeton University Press, 1986), 3–4.Google Scholar
  3. 2.
    Kula, Measures and Men, 118. Also see David Cahan, An Institute for an Empire: The Physikalisch-Technische Reichsanstalt, 1871–1918 (Cambridge: Cambridge University Press, 1989), 5.Google Scholar
  4. 3a.
    On authority and quantification, see the excellent discussions in Theodore M. Porter, “Objectivity and Authority: How French Engineers Reduced Public Utility to Numbers”, Poetics Today 12 (1991):245–65;CrossRefGoogle Scholar
  5. 3a.
    Theodore M. Porter, Trust in Numbers: The Pursuit of Objectivity in Science and Public Life (Princeton: Princeton University Press, 1995).Google Scholar
  6. 4.
    Kathryn M. Olesko, “The Meaning of Precision: The Exact Sensibility in Early Nineteenth Century Germany”, in The Values of Precision, ed. M. Norton Wise (Princeton: Princeton University Press, 1995), 105–34.Google Scholar
  7. 5.
    “Entwurf eines Gesetzes, betreffend die elektrischen Masseinheiten”, Stenographische Berichte über die Verhandlungen des Reichstages, Aktenstuck Nr. 181, IX. Legislatur-periode, V. Session, 1897/98, Bd. 164, 1735–41, on 1736.Google Scholar
  8. 6a.
    The British case is discussed by: Bruce Hunt, “The Ohm is Where the Art Is: British Telegraph Engineers and the Development of Electrical Standards”, Osiris 9 (1994):48–63; Larry Randies Lagerstrom, “Universalizing Units: The Rise and Fall of the International Electrical Congress, 1881–1904”, unpubl. ms., 1992, 3–5;CrossRefGoogle Scholar
  9. 6b.
    Simon Schaffer, “Late Victorian Metrology and its Instrumentation: A Manufactory of Ohms”, in Invisible Connections: Instruments, Institutions, and Science, ed. Robert Bud and Susan E. Cozzens (Bellingtam, Wa.: SPIE Optical Engineering Press, 1992), 23–56;Google Scholar
  10. 6c.
    Crosbie Smith and M. Norton Wise, Energy and Empire: A Biographical Study of Lord Kelvin (Cambridge: Cambridge Univ. Press, 1989), 684–98;Google Scholar
  11. 6d.
    Hunt, “‘Practice vs. Theory’: The British Electrical Debate, 1888–1891”, Isis 74 (1983):341–55; Schaffer, “‘Accurate Measurement is an English Science’“, in The Values of Precision, 137–72;CrossRefGoogle Scholar
  12. 6c.
    Graeme Gooday, “Precision Measurement and the Genesis of Physics Teaching Laboratories in Victorian Britain”, British Journal for the History of Science 23 (1990):25–51;CrossRefGoogle Scholar
  13. 6e.
    Graeme Gooday, “Teaching Telegraphy and Electrotechnics in a Physics Laboratory: William Ayrton and the Creation of an Academic Space for Electrical Engineering in Britain, 1873–1884”, History of Technology 13 (1991):73–111. In the preparation of this essay, I was especially influenced by Bruce Hunt’s recent work.Google Scholar
  14. 7a.
    Wilhelm Weber, Elektrodynamische Maassbestimmungen: Ueber ein allgemeines Grundgesetz der elektrischen Wirkung (1846), in Wilhelm Weber’s Werke, ed. by Kgl. Gesellschaft der Wissenschaften zu Göttingen, 6 vols. (Berlin: J. Springer, 1892–1894), 3:25–214.Google Scholar
  15. 7b.
    On the transformation in German physics, see Kenneth L. Caneva, “From Galvanism to Electrodynamics: The Transformation of German Physics and its Social Context”, Historical Studies in the Physical Sciences 9 (1978):63–159.Google Scholar
  16. 8a.
    Rudolf Stichweh, Zur Entstehung des modernen Systems wissenschaftlicher Disziplinen: Physik in Deutschland, 1740–1890 (Frankfurt a.M.: Suhrkamp, 1984), 203–5, 231–2, 379–81, 480–2;Google Scholar
  17. 8a.
    Christa Jungnickel and Russell McCormmach, Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, 2 vols. (Chicago: Univ. of Chicago Press, 1986), 1:75–7, 139–49;Google Scholar
  18. 8a.
    Kathryn M. Olesko, Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics (Ithaca, N.Y.: Cornell University Press, 1991), 173–4, 185–6, 188, 279, 409–10, 455;Google Scholar
  19. 8b.
    Kathryn M. Olesko, “Tacit Knowledge and School Formation”, Osiris 8 (1993):15–29.CrossRefGoogle Scholar
  20. 9.
    Weber’s Werke, 2:20–42, 3:31, passim.Google Scholar
  21. 10.
    Moritz Jacobi, quoted in Weber’s Werke, 3:303–4.Google Scholar
  22. 11.
    Oskar Frölich, Die Entwickelung der elektrischen Messungen. Die Wissenschaft: Sammlung naturwissenschaftlicher und mathematischer Monographien, Heft 5 (Braunschweig: F. Vieweg & Sohn, 1905), 96.Google Scholar
  23. 12.
    Wilhelm Weber, “Messungen galvanischer Leitungswiderstände nach einem absolute Maasse”, Annalen der Physik und Chemie [hereafter AP] 8 (1851):337–69, on 357.CrossRefGoogle Scholar
  24. 13.
    Weber, “Messungen galvanischer Leitungswiderstände”, 337, 358.Google Scholar
  25. 14.
    Olesko, “The Meaning of Precision”, 118. Weber’s interest in rectifying standards of weight is also evident in his work on the specific gravity of water. Finding that difference in various determinations of weight were too great to be attributed to errors of observation or calculational errors, Weber suggested that uncertainty in the specific gravity of water was the cause of discrepancies in calculations used to determine standards of weight. Weber, “Ueber die noch vorhandene Unzuverlässigkeit im specifischen Gewichte des Wassers” (1830), Weber’s Werke, 1:416–18.Google Scholar
  26. 15.
    On Gauss, see Olesko, “The Meaning of Precision”, 119–21.Google Scholar
  27. 16.
    Weber, “Electrodynamische Maassbestimmungen insbesondere Widerstandsmessungen” (1852), Weber’s Werke, 3:301–471, on 303.Google Scholar
  28. 17.
    Weber, “Elektrodynamische Maassbestimmungen”, Weber’s Werke, 3:350–4.Google Scholar
  29. 18.
    Weber, “Messungen galvanischer Leitungswiderstände”, 357.Google Scholar
  30. 19.
    Weber, “Elektrodynamische Maassbestimmungen”, Weber’s Werke, 3:318.Google Scholar
  31. 20.
    Frölich, Die Entwickelung der elektrischen Messungen, 153, 43, 96.Google Scholar
  32. 21.
    See esp. Weber’s Werke, 2:20–42, 274–6.Google Scholar
  33. 22.
    Weber, “Elektrodynamische Maassbestimmungen”, Weber’s Werke, 3:355. Weber’s effort to streamline experimentation and reduce the time-investment in routine tasks, such as instrument reading, is evident in his many studies on instruments. See for instance, Weber, “Ueber Barometer-und Thermometerskalen” (1837), Weber’s Werke, 1:516–25, esp. 516.Google Scholar
  34. 23.
    William Thomson, “Ueber die Elektrizitäts-Leitungsfähigkeit von käuflichen Kupferdräthen aus verschiedenen Bezugsquellen”, Zeitschrift des deutsch-österreichischen Telegraphen-Vereins [hereafter ZTV] 5 (1858): 137–41, on 140.Google Scholar
  35. 24a.
    E. Lampe, “Philipp Wilhelm Brix”, Verhandlungen der Deutschen Physikalischen Gesellschaft 1 (1899):125–35, esp. 130–2 (quote, 131); Olesko, Physics as a Calling, 137–9.Google Scholar
  36. 25.
    C. Frischen, “Ueber Isolation oberirdischer Leitungen”, ZTV 5 (1858):51–3; “Nachbemerkung der Redaction”, ibid.:53–4, on 54.Google Scholar
  37. 26.
    Werner Siemens, “On the Question of the Unit of Electrical Resistance”, Philosophical Magazine 31 (1866):325–36.Google Scholar
  38. 27.
    Wilhelm Beetz, “Das Ohm’sche Gesetz mit Beispielen seiner Anwendung in der Telegraphie”, ZTV 2 (1855):49–58, 73–81, on 54.Google Scholar
  39. 28.
    Christoph Bergeat, “Ueber die Bestimmung der Factoren eines galvanischen Stromes und einen hierzu sehr bequemen Rheostaten”, ZTV 4 (1857):265–75.Google Scholar
  40. 29.
    Frölich, Die Entwickelung der elektrischen Messungen, 100–1.Google Scholar
  41. 30.
    Carl Siemens, “Bestimmung der auf Telegraphenleitungen vorkommenden Störungen mittelst Differential-Instrumenten von Siemens und Halske”, ZTV 5 (1858):13–18, on 13, 14, 17.Google Scholar
  42. 31a.
    Ernst Esselbach, “Notiz über den Leitungswiderstand einiger Unterseekabeln”, ZTV 6 (1859): 109–10. Esselbach did not include a temperature specification.Google Scholar
  43. 32.
    Werner Siemens, “Vorschlag eines reproducibaren Widerstandsmasses”, ZTV 7 (1860):55–68. On Siemens’s unit, see Frölich, Die Entwickelung der elektrischen Messungen, 96–7; Lagerstrom, “Universalizing Units”, 2–3.Google Scholar
  44. 33.
    Siemens, “Vorschlag”, 65, 59, 61, 63.Google Scholar
  45. 34.
    Siemens, “Vorschlag”, 56, 64, 65.Google Scholar
  46. 35a.
    Werner Siemens, “Widerstands-Etalon”, AP 120 (1863):512. Siemens had issued graduated resistance coils, in units from 1 to 100, as early as 1848; he did not specify the foundation of the unit. Siemens, “On the Question of the Unit of Electrical Resistance”, 336.Google Scholar
  47. 36.
    Werner Siemens, “Proposal for a New Reproducible Standard Measure of Resistance to Galvanic Circuits”, Philosophical Magazine 21 (1861):25–38.Google Scholar
  48. 37.
    Esselbach, Kirchhoff, and Siemens argued their points in separate letters to the Committee on Electrical Standards in 1862, rpt. in Reports of the Committee on Electrical Standards, ed. Fleeming Jenkin (London: E. & F. N. Spoon, 1873), 26–32.Google Scholar
  49. 38.
    “First Report — Cambridge, October 3, 1862”, rpt. in Reports, 1–11, on 2, 5, 7. On the establishment of the British resistance standard, see also Hunt, “The Ohm is Where the Art Is”; Schaffer, “Late Victorian Metrology”; Smith & Wise, Energy and Empire, 684–98.Google Scholar
  50. 39a.
    See for instance, Augustus Matthiessen, “Ueber die elektrische Leitungsfahigkeit der Metall-Legirungen”, ZTV 7 (1860):9–14; Augustus Matthiessen, “Ueber eine Legirung, welche als Widerstandsmaass gebraucht werden kann”, ZTV 7, 73–5;Google Scholar
  51. 39b.
    A. Matthiessen and M. Holzmann, “Ueber die Leitungsfahigkeit des reinen Kupfers und deren Verminderung durch Metalloide und Metalle”, ZTV 1 (1860):261–9;Google Scholar
  52. 39d.
    W. Beetz, “Ueber die Elektricitätsleitung durch Kohle und durch Metalloxyde”, ZTV 7 (1860):270–1.Google Scholar
  53. 40.
    “Second Report — Newcastle-on-Tyne, August 26, 1863”, rpt. in Reports, 39–53, on 53. Augustus Matthiessen and Charles Hockin, “On the Construction of Copies of the B.A. Unit”, rpt. in Reports, 135–7, on 136.Google Scholar
  54. 41.
    Siemens, “On the Question of the Unit of Electrical Resistance”, 326; Werner Siemens, “Ueber Widerstandsmaasse und die Abhängigkeit des Leitungswiderstandes der Metalle von der Wärme”, ZTV 8 (1861):76–85, on 77. In consequence of his approach, Siemens collapsed the unit and the standard into one, while the British kept them separate. Lagerstrom, “Universalizing Units”, 4 (fn.12). Before the establishment of the meter in France at the end of the eighteenth century and scientific standards in the Germanies in the first half of the nineteenth, however, standards and units were rarely separated legally.Google Scholar
  55. 42.
    Matthiessen later found German silver acceptable as a distributable standard, but still refused to use mercury for the original calibration. Augustus Matthiessen, “Einige Bemerkungen zu der Abhandlung des Hrn. Siemens: Ueber Widerstandsmaasse und die Abhängigkeit des Leitungswiderstandes der Metalle von der Wärme”, AP 114 (1861):310–21.Google Scholar
  56. 43.
    Augustus Matthiessen, “On the Specific Resistance of the Metals in terms of the B.A. Unit (1864) of Electric Resistance, together with some Remarks on the so-called Mercury Unit”, Philosophical Magazine 29 (1865):361–70, on 367–8.Google Scholar
  57. 44.
    “First Report”, rpt. in Reports, 5 (emphasis added).Google Scholar
  58. 45.
    That the British were indeed thinking in these terms is also evident in their remark that they hoped copies of the proposed material standard “will soon be everywhere obtainable, and that a man will no more think of producing his own standard than of deducing his foot-rule from a pendulum.. ”.. “First Report”, rpt. in Reports, 5.Google Scholar
  59. 46.
    Siemens, “Ueber Widerstandmaasse und die Abhängigkeit des Leitungswiderstandes der Metalle von der Wärme”, 76.Google Scholar
  60. 47.
    Fleeming Jenkin, “New Unit of Electrical Resistance”, Philosophical Magazine 29 (1865):477–86, on 484.Google Scholar
  61. 48.
    Olesko, “The Meaning of Precision”.Google Scholar
  62. 49a.
    On this culture of precision, see Kathryn M. Olesko, “The Culture of Precision in Nineteenth Century Germany”, unpubl. paper presented at the Deutsches Historisches Institut, Washington, DC, 21 May 1992;Google Scholar
  63. 49b.
    Kathryn M. Olesko, “The Meaning of Precision” 1992;Google Scholar
  64. 49c.
    Kathryn M. Olesko, “Precision, the Cadaster, and Property Rights in Pre-Imperial Germany”, essay presented at the combined meeting of the British Society for the History of Science and the History of Science Society, Edinburgh, July 1996. Simon Schaffer has detailed attributes of British precision measurement in “Accurate Measurement is an English Science.”Google Scholar
  65. 49d.
    A discussion of American precision pertinent to present concerns is found in Francis B. Crocker, “The Precision of Electrical Engineering”, Transactions of the American Institute of Electrical Engineers 14 (1897):237–49.Google Scholar
  66. 49e.
    On concepts of precision in early modern Europe, see Steven Shapin, A Social History of Truth: Civility and Science in Seventeenth Century England (Chicago: University of Chicago Press, 1994), 310–54;Google Scholar
  67. 49f.
    and on the modern culture of precision, see the articles in The Values of Precision, ed. M. Norton Wise (Princeton: Princeton University Press, 1995).Google Scholar
  68. 50.
    “Second Report”, rpt. in Reports, 51; “Third Report — Bath, September 14, 1864”, rpt. in Reports, 110–14, on 111; Siemens, “On the Question of the Unit of Electrical Resistance”, 334.Google Scholar
  69. 51.
    Ian Hopley, “Maxwell’s Work on Electrical Resistance: the Determination of the Absolute Unit of Resistance”, Annals of Science 13 (1957):265–72; Schaffer, “Accurate Measurement is an English Science”.CrossRefGoogle Scholar
  70. 52.
    “Second Report”, rpt. in Reports, 47.Google Scholar
  71. 53.
    J. Clerk Maxwell, Balfour Stewart, and Fleeming Jenkin, “Description of an Experimental Measurement of Electrical Resistance, made at King’s College” [1863], rpt. in Reports, 96–109, on 96 (emphasis added); see also “First Report”, ibid., 7.Google Scholar
  72. 54.
    “Second Report”, rpt. in Reports, 50.Google Scholar
  73. 55.
    Maxwell et al., “Description of an Experimental Measurement”, 96–109.Google Scholar
  74. 56.
    “Second Report”, rpt. in Reports, 40.Google Scholar
  75. 57.
    “Second Report”, rpt. in Reports, 50–1.Google Scholar
  76. 58.
    “Third Report”, rpt. in Reports, 111.Google Scholar
  77. 59.
    “Third Report”, rpt. in Reports, 111.Google Scholar
  78. 60.
    Siemens, “On the Question of the Unit of Electrical Resistance”, 327.Google Scholar
  79. 61.
    Siemens, “On the Question of the Unit of Electrical Resistance”, 327, 329.Google Scholar
  80. 62.
    Maxwell et al., “Description of an Experimental Measurement”, 105, 108, 109.Google Scholar
  81. 63.
    Matthiessen, “On the Specific Resistance of the Metals”.Google Scholar
  82. 64.
    Siemens, “On the Question of the Unit of Electrical Resistance”, 328–9 (emphasis added).Google Scholar
  83. 65.
    Augustus Matthiessen, “Note on Dr. Siemens’s paper ‘On the Question of the Unit of Electrical Resistance’ ”, Philosophical Magazine 31 (1866):376–80.Google Scholar
  84. 66.
    Fleeming Jenkin, “Reply to Dr. Werner Siemens’s Paper ‘On the Question of the Unit of Electrical Resistance’ ”, Philosophical Magazine 32 (1866): 161–77.Google Scholar
  85. 67.
    Jenkin, “Reply”, 176–7 (emphasis added).Google Scholar
  86. 68.
    Johann Eytelwein, Vergleichungen der gegenwärtig und vormals in den königlichen Preussischen Staaten eingeführten Maasse und Gewichte, mit Rücksicht auf die vorzüglichsten Maasse und Gewichte in Europa (Berlin: Realschulbuchhandlung, 18102).Google Scholar
  87. 69.
    Gutachten über Einführung gleichen Masses und Gewichtes in den deutschen Bundesstaaten. Ausgearbeitet von der durch die hohe deutsche Bundesversammlung hierzu berufenen Kommission (Frankfurt am Main: Bundes-Druckerei, 1861).Google Scholar
  88. 70.
    Gutachten, 10, 66–8.Google Scholar
  89. 71.
    Gutachten, 15.Google Scholar
  90. 72.
    Jenkin, “Reply”, 163.Google Scholar
  91. 73.
    Gutachten, 40–41. See also Gustav Karsten, Die international General-Konferenz für Maass und Gewicht in Paris 1889: Rede gehalten beim Antritt des Rektorates der Universität Kiel am 5 März 1890 (Kiel: Universitäts-Buchhandlung, 1890), 6. Karsten and others point out that the exact and compelling nature of Bessel’s work foreclosed, in Prussia, consideration of alternative standards of measure, including the meter, whose foundations were considered less exactly established.Google Scholar
  92. 74.
    Friedrich Wilhelm Bessel, Untersuchungen über die Länge des einfachen Secundenpendels, besonders abgedruckt aus den Abhandlungen der Akademie zu Berlin für 1826 (Berlin: Kgl. Akademie der Wissenschaften, 1828). At Königsberg, Bessel’s methods, as exemplified in the seconds pendulum investigation, became the foundation of Franz Neumann’s teaching program in theoretical physics in which the analysis of instruments, error analysis, and the method of least squares were central. Olesko, Physics as a Calling, esp. chp. 4: Mechanics and the Besselian Experiment.Google Scholar
  93. 75.
    Friedrich Wilhelm Bessel, Darstellung der Untersuchungen und Maassregeln, welche, in den Jahren 1835 bis 1838, durch die Einheit des Preussischen Längenmaasses worden sind (Berlin: Kgl. Akademie der Wissenschaften, 1839); Olesko, “The Meaning of Precision”, 121–5.Google Scholar
  94. 76.
    Gutachten, 40–3, 64–8.Google Scholar
  95. 77.
    Gutachten, 53.Google Scholar
  96. 78.
    Gutachten, 53–4.Google Scholar
  97. 79.
    Gutachten, 54–5.Google Scholar
  98. 80.
    Gustav Karsten, Ueber die Maass- und Gewichts-Ordnung für den Norddeutschen Bund (Kiel: A. F.Jensen, 1869).Google Scholar
  99. 81.
    Wörterbuch des Deutschen Staats- und Verwaltungsrechts, ed. Max Fleischman, 3 vols. (Tübingen: J. C. B. Mohr, 1911–1914), 2:813–18 (s.v. “Mass und Gewicht”), on 814–15.Google Scholar
  100. 82.
    Weber, “Ueber die beabsichtigte Einführung eines galvanischen Widerstands-Etalons oder Standards” (1861), Weber’s Werke, 4:10–16, on 13.Google Scholar
  101. 83.
    Weber, “Ueber einheitliche Maasssysteme” (1861), Weber’s Werke, 1:526–39, on 534 (emphasis in original).Google Scholar
  102. 84.
    Weber, “Zur Galvanometrie” (1862), in Weber’s Werke, 4:17–96, on 69.Google Scholar
  103. 85a.
    Louis Schwendler [electrician at Siemens Brothers in Woolwich], “Ueber den passendsten Widerstand des bei Messungen mit der Wheatstone’schen Brücke benutzten Galvanometers”, ZTV 13 (1866):77–82, 14 (1867):32–8;Google Scholar
  104. 85b.
    Franz Dehms [Siemens & Halske, Berlin], “Vorschlag zu einer veränderten Construction der Wheatstone’schen Brücke, und Bemerkungen über die Messung mit derselben”, ZTV 13 (1866):259–70;Google Scholar
  105. 85c.
    C. W. Siemens, “Ueber einen Widerstandmesser”, ZTV 14 (1867):76–8;Google Scholar
  106. 85d.
    Franz Dehms [now with the Prussian state telegraph bureaucracy in Berlin], “Methode zur Herstellung von Widerstandsscalen sowie Bemerkungen über Anordnung derselben”, ZTV 14 (1867):4–14;Google Scholar
  107. 85e.
    Werner Siemens, “Das Universal-Galvanometer”, ZTV 15 (1868):l–6;Google Scholar
  108. 85f.
    Heinrich Weber [Technische Hochschule, Braunschweig], “Vorschriften zur Construction von Galvanoskopen, welche das Maximum der Empfindlichkeit besitzen”, ZTV 16 (1869):105–14. I discuss changes brought to instrumentation and exact experiment as a result of technical demands in “Industrial Demands and the Political Economy of Exact Experiment”, unpubl. essay presented at the Conference on Writing the History of Physics, St. John’s College, Cambridge, 3–5 April 1991.Google Scholar
  109. 86.
    During the 1860s the practical problem in telegraphy most frequently discussed was fault location. See ZTV, volumes 7–16 (1860–69).Google Scholar
  110. 87.
    See e.g., C. Siemens, “Ueber einen Widerstandsmesser”, 76.Google Scholar
  111. 88.
    In his redesigning of resistance scales, for instance, Franz Dehms tried make available to electricians the accuracy that physicists had in their system of weights. Dehms, “Method zur Herstellung von Widerstandsscalen”, 4.Google Scholar
  112. 89.
    W. Siemens, “Das Universal-Galvanometer”, 1.Google Scholar
  113. 90a.
    Franz Dehms, “Neue Bestimmung der Siemens’schen Widerstands-Einheit”, ZTV 15 (1868):13–44, on 13, 33. The ZTV publication of his investigation became Dehms’s doctoral dissertation at Rostock;Google Scholar
  114. 90b.
    Franz Dehms, “Ueber eine Reproduction der Siemen’schen Widerstands-Einheit”, Inaugural-Dissertation zur Erlangung der philosophischen Doctorwürde bei der Universität zu Rostock (Berlin: Ernst & Korn, 1868). Note that in his doctoral dissertation he drew attention to the reproducibility of the Siemens unit, one element in the British-German controversy; the text remained the same.Google Scholar
  115. 91.
    “Third Report”, rpt. in Reports, chart facing 114.Google Scholar
  116. 92.
    Dehms, “Neue Bestimmung”, 40.Google Scholar
  117. 93a.
    Wilhelm Weber Nachlass, Nrs. 21.1–21.5: Seminar-Vorlesungen in Nachschrift v. K. Hatten-dorff; Hermann Wagner Nachlass, Nrs. 6.1–6.5: Vorträge von Wilhelm Weber über verschiedene Gegenstände der mathematischen Physik, gehalten im physikalischen Seminar der Georgia Augusta, 1860–63; both located in the Abteilung für Handschriften und seltene Drucke, Niedersachsische Staats- und Universitätsbibliothek, Altbau, Göttingen. Electrical measurements constituted the core of Friedrich Kohlrausch’s pedagogic physics, which was based on the Göttingen program in physics instruction. Friedrich Kohlrausch, Leitfaden der praktischen Physik zunächst für das physikalische Prakticum in Göttingen (Leipzig: B.G Teubner, 1870), esp. 60–91; Olesko, “Tacit Knowledge and School Formation”, 26–8. Copies of the electrical resistance units of Siemens and the British Association can still be found in the I. Physikalisches Institut, Universität Göttingen.Google Scholar
  118. 94.
    Friedrich Kohlrausch, “Beobachtungen im magnetischen Observatorium aus dem Jahre 1869, insbesondere Bestimmung der Siemens’schen Widerstandseinheit nach absolutem Masse” (1870), in Gesammelte Abhandlungen von Friedrich Kohlrausch, ed. W. Hallwachs, Adolf Heydweiller, K. Strecker, and O. Wiener, 2 vols. (Leipzig: J. A. Barth, 1910–11), 1:383–91, on 383.Google Scholar
  119. 95.
    Friedrich Kohlrausch, “Determination of the Absolute Value of the Siemens’s Mercury Unit of Electrical Resistance”, Philosophical Magazine 47 (1874):294–309, 342–54, on 294. I have made some adjustments in the English translation based on a comparison with the original German; cf. Kohlrausch, Gesammelte Abhandlungen, 1:435–68, on 435.Google Scholar
  120. 96.
    Kohlrausch, “Determination”, 295 [1:436], 297, 301, 299 [1:440], 299, 300. Among the possible sources of the British data’s irregularity, Kohlrausch cited problems with: the rotational velocity of the needle; the inductor’s motion to the left and right; the thread’s torsion; elastic yielding; the metal parts of the apparatus; and others. The principal “share of the uncertainty” was in his view due to the horizontal component of the earth’s magnetic force. Ibid., 305.Google Scholar
  121. 97.
    Kohlrausch, “Determination”, 309.Google Scholar
  122. 98.
    Kohlrausch, “Determination”, 353.Google Scholar
  123. 99.
    Henry Rowland, “Note on Kohlrausch’s Determination of the Absolute Value of the Siemens Mercury Unit of Electrical Resistance”, Philosophical Magazine 50 (1875): 161–3.Google Scholar
  124. 100.
    Oskar Frölich, Die Lehre von der Elektricität und dem Magnetismus mit besonderer Berücksichtigung ihrer Beziehungen zur Telegraphic Handbuch der elektrischen Telegraphie, ed. K. E. Zetzsche, vol. 2 (Berlin: J. Springer, 18782), 64, 98, 96, 442–3, 437; on 437, 443.Google Scholar
  125. 101a.
    These investigations include: Werner Siemens, “Directe Messung des Widerstandes galvanischer Ketten”, AP Jubelband (1874):445–8; Oskar Frölich, “Directe Messung des Widerstandes galvanischer Ketten [nach Siemens]”, ibid.:448–52;Google Scholar
  126. 101b.
    F. Himstedt, “Ueber eine Methode zur Bestimmung des Ohm”, AP 22 (1884):281–6;Google Scholar
  127. 101c.
    Heinrich Wild, “Bestimmung des Werthes der Siemens’schen Widerstands-Einheit in absolutem elektromagnetischen Maasse”, Mémoires VAcadémie impériale des sciences de St. Petersbourg 32 (1884): 1–122;Google Scholar
  128. 101d.
    H. Wild, “Bestimmung des Werthes der Siemens’schen Widerstandseinheit in absolutem electromagnetischen Maasse”, AP 23 (1884):665–77;Google Scholar
  129. 101e.
    F. Kohlrausch, “Zu einigen Kritischen Bemerkungen des Hrn. Wild”, AP 23 (1884):344–8;Google Scholar
  130. 101f.
    H. Wild, “Antwort auf einige Bemerkungen des Herrn F. Kohlrausch”, AP 24 (1885): 209–14;Google Scholar
  131. 101g.
    Stefan Lindeck, “Ueber eine Herstellung von Normalquecksilberwiderstände”, Zeitschrift für Instrumentenkunde 11 (1891): 171–83. Other investigations are cited below.Google Scholar
  132. 102.
    Gustav Wiedemann, “Ueber die bisherigen Methoden zur Feststellung des Ohm”, Elektrotechnische Zeitschrift [hereafter EZ] 3 (1882):260–9, on 260, 266.Google Scholar
  133. 103.
    Siemens & Halske, “Bericht über eine Rekonstruktion der Quecksilverwiderstandseinheit und Beschreibung der Einrichtungen für elektrische Messungen”, EZ 3 (1882):408–15, on 408.Google Scholar
  134. 104.
    In the Siemens & Halske reconstruction of the mercury unit, for instance, it was found that the “greatest uncertainty” arose in the determination of the weight of the mercury, but the bureau of weights and measures was able to determine that the uncertainty was only 1/10,000 of the final value. Siemens & Halske, “Bericht”, 410.Google Scholar
  135. 105.
    Siemens & Halske, “Bericht”.Google Scholar
  136. 106.
    Wilhelm Weber and Friedrich Zöllner, “Ueber Einrichtungen zum Gebrauch absoluter Maasse in der Elektrodynamik mit praktischer Anwendung” (1880), in Weber’s Werke, 4:420–76, esp. 431, 436, 439.Google Scholar
  137. 107.
    Wiedemann, “Ueber die bisherigen Methoden zur Feststellung des Ohm”, 269, 268.Google Scholar
  138. 108.
    Wiedemann, “Ueber die bisherigen Methoden zur Feststellung des Ohm”, 268.Google Scholar
  139. 109.
    Siemens & Halske, “Bericht”, 408.Google Scholar
  140. 110.
    Lord Rayleigh, “Address to the Mathematical and Physical Sciences Section”, British Association Reports (1882): 437–41, on 438.Google Scholar
  141. 111.
    Schaffer, “Accurate Measurement is an English Science”, 164. Schaffer emphasized the collaborative nature of British precision measurement in a handout of quotations, with generalizations, that accompanied his initial presentation of his essay at the Princeton Workshop in History of Science on “Values of Precision” in March 1992.Google Scholar
  142. 112.
    J. Clerk Maxwell and Fleeming Jenkin, “On the Elementary Relations between Electrical Measurements”, Philosophical Magazine 29 (1865):436–60, 507–25, on 437.Google Scholar
  143. 113.
    These differences help in interpreting Henry Rowland’s 1876 remark, that “the accurate measurement of resistance either absolutely or relatively is an English science almost unknown in Germany” (Quoted in Schaffer, “Accurate Measurement is an English Science,”, 139. Schaffer draws his theme from this remark.) For Rowland, the activity of “accurate measurement” appears to have meant something different than it did in Germany. Rowland’s remark was accompanied by the observation that, with regard to the apparatus used at Göttingen, “the form of the earth inductor was such that it would be impossible to find its area with accuracy” (this part of Rowland’s comment was eliminated from the final published version of Schaffer’s essay). Rowland thus appears to have recoiled from the prospect of a complicated process of error analysis, a conclusion supported by Wiedemann’s observations that not only did Rowland analyze his data improperly, but he also failed to take into account several sources of constant errors in his experiment. Wiedemann, “Ueber die bisherigen Methoden zur Feststellung des Ohm”, 266.Google Scholar
  144. 114.
    David Cahan, “Werner Siemens and the Origin of the Physikalisch-Technische Reichsanstalt, 1872–1887”, Historical Studies in the Physical Sciences 12 (1982):253–83, on 259.Google Scholar
  145. 115.
    Lagerstrom, “Universalizing Units”, 8. Lagerstrom concludes that the main factors standing in the way of agreement were: (1) the persistence of nationalist sentiments, especially concerning the sovereign right of a state to control its own standards, in the context of trying to establish international units; and (2) the format and lack of authority of the Congresses.Google Scholar
  146. 116.
    Ernst Dorn, “Die elektrotechnischen Versuche auf der internationalen Elektrizitäts-Ausstellung in München, 1882”, EZ 4 (1883):404–15, on 404.Google Scholar
  147. 117.
    Die Königliche Akademie der Wissenschaften [Curtius, Emil du Bois-Reymond, Mommsen, Auwers] to Minister von Gossler, 12 February 1885, Geheimes Staatsarchiv Preussischer Kulturbesitz [hereafter GSPK], Berlin-Dahlem, Ministerium der geistlichen, Unterrichts- u. Medicinal-Angelegenheiten. Unterrichts-Abteilung. Acta betreffend: Die internationale Conferenz zur Berathung von Fragen der elektrischen Wissenschaft und Praxis sowie die elektrische Ausstellung in Paris, desgl. in München, Rep. 76vc, Sekt 1, Tit. 11, Teil VI, Nr. 5, Bd. II, 1883–91, fols. 271–274, on fol. 273r; “Electrische Einheiten und Lichteinheiten”, AP 22 (1884): 616.Google Scholar
  148. 118a.
    Akademie der Wissenschaften to Gossler, 12 February 1885; Werner Siemens, “Ueber elektrische und Lichteinheiten nach den Beschlüssen der Pariser internationalen Conferenz” (1884)”, in Werner Siemens, Wissenschaftliche und Technische Arbeiten.Google Scholar
  149. 118b.
    Erster Band. Wissenschaftliche Abhandlungen und Vorträge (Berlin: J. Springer, 1889), 399–403, on 401.Google Scholar
  150. 119.
    Lagerstrom, “Universalizing Units”, 13–20.Google Scholar
  151. 120.
    Die Königliche Akademie der Wissenschaften [Auwers, Emil du Bois-Reymond, Curtius, Mommsen] to Kultusministerium, 6 April 1883, GSPK, Internationale Conferenz, fols. 114–16, on fol. 114–14r, 116 (emphasis added).Google Scholar
  152. 121.
    Akademie der Wissenschaften to Minister von Gossler, 12 February 1885, fols. 273–273r.Google Scholar
  153. 122.
    Cahan, An Institute for an Empire. Google Scholar
  154. 123.
    Frölich, Die Entwickelung der elektrischen Messungen, 98. The Physikalisch-Technische Reich-sanstalt’s contribution to electrical measurement, standards, and testing, was extensive; see Cahan, An Institute for an Empire, passim.Google Scholar
  155. 124a.
    Cahan, An Institute for an Empire, 43, 104–105, 109, 115; Johann Pernet, “Ueber die physikalisch-technische Reichsanstalt zu Charlottenburg und die daselbst ausgeführten electrischen Arbeiten”, Schweizerische Bauzeitung 18 (1891):1–6, esp. 4;Google Scholar
  156. 124b.
    Johann Pernet, “Ueber den Einfluss physikalischer Präcisionsmessungen auf die Förderung der Technik und des Mass- und Gewichtswesens”, Schweizerische Bauzeitung, 24 (1894):110–14, esp. 112.Google Scholar
  157. 125.
    Cahan, An Institute for an Empire, 81.Google Scholar
  158. 126.
    “Vorschläge zu gesetzlichen Bestimmungen über elektrische Maasseinheiten entworfen durch das Curatorium der Physikalisch-Technischen Reischsanstanlt”, in Friedrich Ernst Dorn, Vorschläge zu gesetzlichen Bestimmungen über elektrische Maasseinheiten, entworfen durch das Curatorium der Physikalisch-Technischen Reichsanstalt: Nebst kritischem Bericht über den wahrscheinlichen Werth des Ohm nach dem bisherigen Messungen (Berlin: J. Springer, 1893), 12.Google Scholar
  159. 127.
    Albert Wigend, “Ernst Dorn”, Physikalische Zeitschrift 17 (1916):297–9, esp. 298 (work on ohm). Olesko, Physics as a Calling, 349, 350–2, 357;Google Scholar
  160. 128.
    Ernst Dorn, “Die Reduction der Siemens’schen Einheit auf absolutes Maass”, AP 17 (1882):773–816, on 773, 774, 785.Google Scholar
  161. 129.
    Ernst Dorn, “Eine Bestimmung des Ohm”, AP 36 (1889):22–72, 398–446.Google Scholar
  162. 130.
    Ernst Dorn, “Ueber den wahrscheinlichen Werth des Ohm nach den bisherigen Messungen”, in Dorn, Vorschläge, 19–86, on 84, 86.Google Scholar
  163. 131.
    “Vorschläge zu gesetzlichen Bestimmungen über elektrische Maasseinheiten”, in Dorn, Vorschläge, 14. This error made the actual value somewhat higher than Dorn’s, and so the entire spread of values shifted, making 1.063 the “best” choice.Google Scholar
  164. 132.
    “Entwurf eines Gesetzes betreffend die elektrischen Masseinheiten”, Stenographische Berichte über die Verhandlungen des Reichstages, Aktenstuck Nr. 181, DC. Legislatur-periode, V. Session, 1897/98, Bd. 164, 1735–41, on 1737 (emphasis added). This point had been made in the Physikalisch-Technische Reichanstalt’s 1893 recommendation. “Vorschläge zu gesetzlichen Bestimmungen über elektrische Maasseinheiten”, in Dorn, Vorschläge, 7–18, on 8. Dorn emphasized that German delegates to the 1881 International Electrical Congress in Paris had stressed this issue as well.Google Scholar
  165. 133.
    “Entwurf, 1738.Google Scholar
  166. 134.
    “Entwurf, 1736, 1740, 1741. The problem of defining crime in the marketplace of electricity was not peculiar to Germany. In 1897 the American electrical engineer Francis B. Crocker reported: “It has also been held by many courts, that electricity being intangible, [it] has no real existence, so that tapping of current from wires could hardly be considered as a theft, except in an imaginary sort of way. The production of electrical energy in central stations has been decided by metaphysically inclined judges to be a totally different kind of business from the manufacture of cas”. Crocker, “The Precision of Electrical Engineering”, 238.Google Scholar
  167. 135.
    Wörterbuch des Deutschen Staats- und Verwaltungsrechts, 2:817.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Kathryn M. Olesko
    • 1
  1. 1.Centre for German and European StudiesGeorgetown UniversityUSA

Personalised recommendations