Advertisement

The Zeiss Werke and the Ultramicroscope: The Creation of a Scientific Instrument in Context

  • David Cahan
Chapter
Part of the Archimedes book series (ARIM, volume 1)

Abstract

I presented a first draft of part of this essay at a conference on “Instruments and Institutions: Making History Today” at The Science Museum, London (April, 1991); I thank Robert Bud and Susan Cozzens for their invitation to do so, and John Krige for his helpful comments and criticisms at the conference. I also presented first drafts of other parts of this essay at History of Science Society meetings in Madison (November, 1991) and New Orleans (October, 1994). Finally, I thank Jed Buchwald and, especially, Gerard L’E. Turner for their many instructive comments and criticisms.

Keywords

Brownian Motion Gold Particle Optical Glass Optical Instrument Optical Instrumentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1a.
    For extensive recent bibliographies on the growing studies of scientific instrumentation see David Gooding, Trevor Pinch, and Simon Schaffer, eds., The Uses of Experiment: Studies in the Natural Sciences (Cambridge, New York, New Rochelle: Cambridge University Press, 1989), 461–7, and passimGoogle Scholar
  2. 1b.
    Adele E. Clarke and Joan H. Fujimura, eds., The Right Tools for the Job: At Work in Twentieth-Century Life Sciences (Princeton, N.J.: Princeton University Press, 1992), 31–44, and passimGoogle Scholar
  3. 1c.
    Albert Van Helden and Thomas L. Hankins, eds., Instruments (= Osiris, second ser. 9 [1994], on 237–42)Google Scholar
  4. 1d.
    On optical instrumentation in particular see Gerard L’E Turner, “The History of Optical Instruments: A Brief Survey of Sources and Modern Studies”, History of Science 8 (1969):53–93Google Scholar
  5. 1e.
    reprinted with supplement in Gerard L’E Turner, Essays on the History of the Microscope (Oxford: Senecio, 1980), chapter 2.Google Scholar
  6. 2a.
    David S. Landes, The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present (Cambridge: Cambridge University Press, 1972), 231–358, esp. 326–58Google Scholar
  7. 2b.
    Otto Keck, “The National System for Technical Innovation in Germany”, in National Innovation Systems: A Comparative Analysis, ed. Richard R. Nelson (New York and Oxford: Oxford University Press, 1993), 115–56, esp. 115–30.Google Scholar
  8. 3.
    The only previous study of the ultramicroscope is the brief and unsatisfactory account of mostly post-1903 developments by Hans Gause, “The Slit Ultramicroscope after Siedentopf and Zsigmondy — An Historical and Optical Study”, Jena Review 11:6 (1966):327–33.Google Scholar
  9. 4a.
    This is, of course, not to say that there were no German manufacturers of microscopes and other optical instruments, on which see, e.g., Hans Weil and Helmut Baden, “Schieck and the Beginnings of the German Microscope Industry”, Bulletin of the Scientific Instrument Society No. 18 (1988):9–12.Google Scholar
  10. 4b.
    For an overview of the European-wide trade in microscope manufacturing see Gerard L’E Turner, “Making Microscopes: The Nineteenth-Century European Trade”, in idem, The Great Age of the Microscope: The Collection of the Royal Microscopical Society through 150 Years (Bristol and New York: Adam Hilger, 1989), 7–17.Google Scholar
  11. 5.
    Brücke to Helmholtz, 19 Oct 1857, Helmholtz Nachlass, Berlin-Brandenburgische Akademie der Wissenschaften.Google Scholar
  12. 6a.
    Unless otherwise noted, the following account of Zeiss relies on Felix Auerbach, Ernst Abbe. Sein Leben, sein Wirken, seine Persönlichkeit, 2nd ed. (Leipzig: Akademische Verlagsgesellschaft, 1922), 115–22Google Scholar
  13. 6b.
    Friedrich Schomerus, Geschichte des Jenaer Zeisswerkes 1846–1946 (Stuttgart: Piscator, 1952), 1–23Google Scholar
  14. 6c.
    Horst Alexander Willam, Carl Zeiss 1816–1888 (Munich: F. Bruckmann, 1967).Google Scholar
  15. 6d.
    See also Moritz von Rohr (with Max Fischer and August Köhler), “Zur Geschichte der Zeissischen Werkstätte bis zum Tode Ernst Abbes”, Forschungen zur Geschichte der Optik 1 (= Beilagehefte zur Zeitschrift für Instrumentenkunde), H. Boegehold, et al., eds. (Berlin: Julius Springer, 1936), 91–201. (A second, enlarged edition of this work by Rohr et al., appeared in Forschungen zur Geschichte der Optik 2 [= Beilagehefte zur Zeitschrift für Instrumentenkunde], H. Boegehold, et al, eds. [Berlin: Julius Springer, 1938], 1–119.) In additionGoogle Scholar
  16. 6e.
    see also Moritz von Rohr, “Über die Arbeitsgemeinschaft von Carl Zeiss und Ernst Abbe bis zum Ende der siebziger Jahre I”, Forschungen zur Geschichte der Optik 1 (= Beilagehefte zur Zeitschrift für Instrumentenkunde), H. Boegehold, et al., eds. (Berlin: Julius Springer, 1936), 160–76Google Scholar
  17. 6f.
    Moritz von Rohr, “Über den Ausgang der Arbeitsgemeinschaft von Carl Zeiss und Ernst Abbe bis zum Ende der siebziger Jahre II”, ”, Forschungen zur Geschichte der Optik 1 (= Beilagehefte zur Zeitschrift für Instrumentenkunde), H. Boegehold, et al., eds. (Berlin: Julius Springer, 1936), 253–92Google Scholar
  18. 6g.
    Moritz von Rohr, “Ernst Abbe als Leiter der Werkstätte bis zu seinem Tode. III”, Forschungen zur Geschichte der Optik 1 (= Beilagehefte zur Zeitschrift für Instrumentenkunde), H. Boegehold, et al., eds. (Berlin: Julius Springer, 1936), 295–346;Google Scholar
  19. 6h.
    Hans Gause, “Carl Zeiss: On the 150th Anniversary of his Birthday, 11th September 1966”, Jena Review (Supplement) 11:4 (1966):2–12. Google Scholar
  20. 7.
    Zeiss quoted in Schomerus, Geschichte, 5.Google Scholar
  21. 8a.
    Auerbach, Abbe, chapter 2; and Schomerus, Geschichte, 24. Unless otherwise noted, the following discussion of Abbe’s early life and career draws on Auerbach, Abbe, chapter 2. Although quite old and hagiographic in its approach and tone, Auerbach’s biography nonetheless remains the best source on Abbe. See also anon., “Ernst Abbe (1840–1905). The Origin of a Great optical Industry”, Nature 145:3664 (20 Jan 1940):89–91; Norbert Günther, Ernst Abbe: Schöpfer der Zeiss Stiftung (Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1951)Google Scholar
  22. 8b.
    E. Brüche, “Ernst Abbe und sein Werk”, Physikalische Blätter 21 (1965):261–9Google Scholar
  23. 8c.
    Harald Volkmann, Carl Zeiss und Ernst Abbe. Ihr Leben und ihr Werk (Munich: VDI Verlag, 1966)Google Scholar
  24. 8d.
    Joachim Wittig, Ernst Abbe. Sein Nachwirken an der Jenaer Universität. Zu seinem 150. Geburtstag am 23. Januar 1990, Jenaer Reden und Schriften (N.p.: N.p., 1989)Google Scholar
  25. 8e.
    Joachim Wittig, Ernst Abbe (Leipzig: BSB B.G. Teubner, 1989).Google Scholar
  26. 9a.
    Auerbach, Abbe, 37–8; Max Steinmetz, et al., eds., Geschichte der Universität Jena 1548/58–1958. Festgabe zum vierhundertjährigen Universitätsjubiläum, 2 vols. (Jena: VEB Gustav Fischer, 1958), 1:410–11Google Scholar
  27. 9b.
    W. Schütz, “Die Physik an der Universität Jena im Wandel ihrer Zeit”, in Beiträge zur Geschichte der Mathematisch-Naturwissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena anlässlich der 400-Jahr-Feier (Jena: VEB Gustav Fischer, 1959), 9–32, esp. 21–4; and Christian Heermann, “Karl Snell und Hermann Schäffer als Hochschulpädagogen. Zur Geschichte des Experimentalunterrichtes in Physik an der Universität Jena in der zweiten Hälfte des 19. Jahrhunderts”, NTM 2:6 (1965):23–36.Google Scholar
  28. 10.
    Auerbach, Abbe, 45.Google Scholar
  29. 11.
    Auerbach, Abbe., 46, 48, 56–7.Google Scholar
  30. 12.
    Auerbach, Abbe., 69–70, 74–82. On the Jena physics institute see also David Cahan, “The Institutional Revolution in German Physics, 1865–1914”, Historical Studies in the Physical Sciences 15:2 (1985):1–65, on 9, 13–14.Google Scholar
  31. 13.
    Ernst Abbe, Ernst Abbe. Briefe an seine Jugend- und Studienfreunde Carl Martin und Harald Schütz 1858–1865, eds. Volker Wahl und Joachim Wittig, et al. (Berlin: Akademie-Verlag, 1986), 267–75, quote on 268–89. Cf. Abbe to Schütz, ibid., p. 296.Google Scholar
  32. 14.
    Auerbach, Abbe, 115; and Schomerus, Geschichte, 32.Google Scholar
  33. 15.
    Auerbach, Abbe, 86–7, 147; Schomerus, Geschichte, 47–8, citing a letter from Karl Snell to a friend, 30 May 1878; and Schütz, “Physik an der Universität Jena”, 22.Google Scholar
  34. 16.
    Volkmann, “Ernst Abbe and His Work”, 1722, implicitly alludes to the division of labor at Zeiss. I thank Gerry Martin for first drawing my attention to this important point.Google Scholar
  35. 17a.
    Abbe’s classic, single most important study of the theory of the microscope was his “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung”, Archiv für mikroskopische Anatomie 9 (1873):413–68. This and his other papers (only some of which were previously published) are (re)printed in Gesammelte Abhandlungen von Ernst Abbe, 5 vols. (Jena: Gustav Fischer, 1904–40), vol. 1: Abhandlungen über die Theorie des Mikroskops (1904). Analyses of Abbe’s theory include M.J. Michael, “Numerical Aperture Reconsidered”, Journal of the Royal Microscopical Society 15 (1895):609–23Google Scholar
  36. 17b.
    Auerbach, Abbe, 122–46; Royal Microscopical Society, “Discussion on the Abbe Theory”, Journal of the Royal Microscopical Society 49 (1929): 123–42, 228–64, which is a set of eleven papers devoted to Abbe’s theory of image formation and the resolving power of the microscope;\Google Scholar
  37. 17c.
    H. Volkmann, “Ernst Abbe and His Work”, Applied Optics 5:11 (1966):1720–31, esp. 1723–4CrossRefGoogle Scholar
  38. 17d.
    S. Bradbury, The Evolution of the Microscope (Oxford, London, Edinburgh: Pergamon Press, 1967), 240–5Google Scholar
  39. 17e.
    N. Günther, “Abbe, Ernst”, in Dictionary of Scientific Biography 1 (1970), ed., Charles Coulston Gillespie, 16 vols. (New York: Charles Scribners, 1970–80), 6–9Google Scholar
  40. 17f.
    Kei-ichi Tsuneishi, “On the Abbe Theory (1873)”, Japanese Studies in the History of Science 12 (1973):79–91, which compares and contrasts Abbe’s theory with a seemingly similar theory proposed by Hermann von Helmholtz in 1874. Keiichi shows, moreover, that until 1900 many scientists (mistakenly) viewed Helmholtz’s and Abbe’s theories of the microscope as similar and that most favored Helmholtz’s.Google Scholar
  41. 17g.
    See also Bernd Wilhelmi, Lichtmikroskopie. Ernst Abbe und sein Einfluss auf moderne Entwicklungen (Berlin: Akademie Verlag, 1991) (= itzungsberichte der Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-naturwissenschaftliche Klasse 123:2). Google Scholar
  42. 18.
    On the basis of Abbe’s theory of image formation, Otto Wiener nominated Abbe in 1904 for the Nobel Prize in Physics (Otto Wiener to Nobelkommitté für Physik der Königl. Akademie der Wissenschaften zu Stockholm, 27 Jan 1904, 1904 Fysik.); and Adolf Winkelmann did the same on the basis of Abbe’s overall contributions to microscopy, noting, i.a., his theory of image formation as a consequence of diffraction (Adolf Winkelmann to the Nobel-Comité der Physik der Königlichen Akademie der Wissenschaften in Stockholm, 28 Dec 1904, 1905 Fysik), both in Royal Swedish Academy of Sciences, Stockholm (hereafter RSASS).Google Scholar
  43. 19.
    Schomerus, Geschichte, 32–5, 44; and Bradbury, Evolution, 225, 227, 256, 273.Google Scholar
  44. 22.
    Wolfgang Mühlfriedel and Edith Hellmuth, “Die Geschichte der Optischen Werkstätte Carl Zeiss in Jena von 1875 bis 1891”, Zeitschrift für Unternehmungsgeschichte 38 (1993):4–25, on 8–13, 18.Google Scholar
  45. 21.
    Ibid., 5; Auerbach, Abbe, 73, 151; idem, The Zeiss Works and the Carl-Zeiss Stiftung in Jena: Their Scientific, Technical, and Sociological Development and Importance Popularly Described, trans. from the 2nd German ed. by Siegfried F. Paul and Frederic J. Cheshire (London: Marshall, Brookes, & Chalkley, 1904), 136; and Schomerus, Geschichte, 38–42, 68.Google Scholar
  46. 22.
    Abbe quoted in Auerbach, Abbe, 158; cf. 160.Google Scholar
  47. 23.
    Ernst Abbe, “Neue Apparate zur Bestimmung des Brechungs- und Zerstreuungsvermögens fester und flüssiger Körper”, Jenaischen Zeitschrift für Naturwissenschaft 8 (187’4):96–174, reprinted in his Gesammelte Abhandlungen 2, Wissenschaftliche Abhandlungen aus verschiedenen Gebieten. Patentschriften. Gedächtnisreden (Jena: Gustav Fischer, 1906), on 82–163. See also his report to the Prussian Kultusminister, Adalbert Falk, on his visit in September 1876 to the London International Exhibition, “Die optischen Hülfsmittel der Mikroskopie”, in A. W Hofmann, ed., Bericht über die Wissenschaftliche Apparate auf der Londoner Internationale Ausstellung in 1876 (Braunschweig: Friedrich Vieweg und Sohn, 1878), 383–420, reprinted in his Gesammelte Abhandlungen 7:119–64.Google Scholar
  48. 24.
    “Die optischen Hülfsmittel der Mikroskopie”, 159, and cited in Volkmann, “Abbe”, 1725 and Bradbury, Evolution, 259–61 (quote on 260).Google Scholar
  49. 25.
    Unless otherwise noted, the present account of Schott relies on Schomerus, Geschichte, 53–67. See also Auerbach, Abbe, 160–79; and Hans-Günther Körber, “Schott, Otto Friedrich”, Dictionary of Scientific Biography 12 (1975), ed., Charles Coulston Gillispie, 16 vols. (New York: Charles Scribners, 1970–80), 211–12, which contains an extensive bibliography.Google Scholar
  50. 26.
    Auerbach, Abbe, 160–1.Google Scholar
  51. 27.
    See Schott’s letter to Abbe of 27 May 1879, reprinted in Schomerus, Geschichte, 55.Google Scholar
  52. 28.
    Herbert Kühnert, ed., Der Briefwechsel zwischen Otto Schott und Ernst Abbe über das optische Glas, 1879–1881 (Jena: Gustav Fischer, 1946). See also Schomerus, Geschichte, 55–8. For further documentary material concerning Abbe’s and Schott’s efforts to establish their glass factory see Kühnert, ed., Briefe und Dokumente zur Geschichte des VEB Optik Jenaer Glaswerk Schott & Genossen, 1. Teil, Die wissenschaftliche Grundlegung (Glastechnisches Laboratorium und Versuchsglashütte) 1882–1884 (Jena: Gustav Fischer, 1953), and Abbe’s Gesammelte Abhandlungen 4, entitled Die Entstehung des Glaswerks von Schott & Gen nach gleichzeitigen Schriftstücken aus amtlichem und persönlichem Besitz zwischen dem März 1882 und dem Januar 1885 (Jena: Gustav Fischer, 1928).Google Scholar
  53. 29.
    Quoted in Auerbach, Abbe, 164–6.Google Scholar
  54. 30.
    Quoted in ibid., 166–7.Google Scholar
  55. 31.
    Abbe to Schott, 21 Mar 1881, in H. Kühnert, ed., Briefwechsel zwischen Schott und Abbe, 50, quoted in Stuart Michael Feffer, “Microscopes to Munitions: Ernst Abbe, Carl Zeiss, and the Transformation of Technical Optics, 1850–1914”, Ph.D. diss., University of California Berkeley (1994), 207.Google Scholar
  56. 32.
    Auerbach, Abbe, 167–9; and Herbert Kühnert, “Ein unbekannter Brief von Ernst Abbe an Hermann v. Helmholtz. Ein Beitrag zur Vorgeschichte des Jenaer Glaswerks Schott und Genossen”, Sprechsaal für Keramik, Glas, Email 94:9 (1961):213–16 and 94:12 (1961):322–3, on 215.Google Scholar
  57. 33.
    Auerbach, Abbe, 169–70; and Schomerus, Geschichte, 59–60.Google Scholar
  58. 34.
    David Cahan, An Institute for an Empire: The Physikalisch-Technische Reichsanstalt 1871–1918 (Cambridge, New York, New Rochelle: Cambridge University Press, 1989), chapter 2.Google Scholar
  59. 35.
    Abbe to Helmholtz, 15 May 1883, Helmholtz Nachlass, Berlin-Brandenburgische Akademie der Wissenschaften, cited in Kühnert, “Ein unbekannter Brief, 214.Google Scholar
  60. 36.
    Kühnert, “Ein unbekannter Brief, 216.Google Scholar
  61. 37.
    Abbe to Nikolaus Kleinenberg, 8 June 1883, quoted in ibid., 323.Google Scholar
  62. 38.
    Auerbach, Abbe, 171–3 (quote on 171–2); and Schomerus, Geschichte, 61–3 (quote on 61).Google Scholar
  63. 39.
    Abbe, “Ueber Neue Mikroskope”, Sitzungsberichte der Jenaischen Gesellschaft für Medizin und Naturwissenschaft (1886), 107–28, reprinted in his Gesammelte Abhandlungen 7:450–72. Abbe’s article soon appeared in English translation as: “On Improvements of the Microscope with the Aid of New Kinds of Optical Glass”, Journal of the Royal Microscopical Society 6:2 (1886):20–34. For a discussion of the Werke’s development and early marketing of the apochromatic objective see Feffer, “Microscopes to Munitions”, 244–54.Google Scholar
  64. 40.
    Schomerus, Geschichte, 45; Bradbury, Evolution, 263, 266–7; and Feffer, “Microscopes to Munitions”, 185–91.Google Scholar
  65. 41.
    [Ernst Abbe and Otto Schott], “Productionsverzeichniss des glastechnischen Laboratoriums von Schott und Genossen in Jena”, July 1886, reprinted in Abbe’s Gesammelte Abhandlungen 2: 194–205; Auerbach, Abbe, 174–5; and Schomerus, Geschichte, 64. The entire chronology of optical glass developments at Zeiss and Schott from 1873 to 1886 is most easily followed in anon., “Zeittafel zum Glaswerk”, in Abbe’s Gesammelte Abhandlungen 4:140–2.Google Scholar
  66. 42.
    H. Hovestadt, Jena Glass and Its Scientific and Industrial Applications, trans. J.D. Everett and Alice Everett (London and New York: Macmillan, 1902), 26–31, 387–93, presents supplementary product lists of glass which in 1888 ran to sixty-eight in number, in 1892 to seventy-six, and in 1902 to sixty-eight.Google Scholar
  67. 43.
    Volkmann, “Abbe”, 1728; and Bradbury, Evolution, 263–70. G. L’E. Turner, “The Microscope as a Technical Frontier in Science”, in Historical Aspects of Microscopy, S. Bradbury and G. L’E. Turner, eds. (Cambridge: W. Heffer, 1967), 175–99, on 188–9, reprinted in Turner’s Essays, chapter 9, shows graphically the increase in numerical aperture for microscopes during the nineteenth century.Google Scholar
  68. 44.
    Auerbach, The Zeiss Works, 31, gives a slightly different developmental history, dividing it into phases lasting from 1846 to 1872 (i.e., until Abbe’s development of his theory of image formation); 1872 to 1889 (a transition period during which homogeneous and apochromatic microscopes, i.a., were developed and in which microscope production went from individual artisanal production to that of an organized, large-scale industrial system); and post-1889 (a period of maturity).Google Scholar
  69. 45.
    Schomerus, Geschichte, 152; and Auerbach, The Zeiss Works, 136, 138–9. Schomerus and Auerbach give slightly different figures for the number of employees.Google Scholar
  70. 46.
    Mari E.W. Williams, The Precision Makers: A History of the Instruments Industry in Britain and France, 1870–1939 (London and New York: Routledge, 1994), 4, 34, 36, 40–2.Google Scholar
  71. 47.
    Auerbach, The Zeiss Works, 76.Google Scholar
  72. 48.
    Mühlfriedel and Hellmuth, “Die Geschichte der Optischen Werkstätte”, 14–15.Google Scholar
  73. 49.
    Auerbach, The Zeiss Works, 88–9; idem, Abbe, 257–8; and Schomerus, Geschichte, 68–9, 105–8.Google Scholar
  74. 50.
    Auerbach, Abbe, 238–76; and Schomerus, Geschichte, 100–3.Google Scholar
  75. 51.
    Ernst Abbe, “Die Denkschrift vom 4. Dez. 1887”, in idem, Gesammelte Abhandlungen 5, ed., Friedrich Schomerus, Werden und Wesen der Carl Zeiss-Stiftung an der Hand von Briefen und Dokumenten aus der Gründungszeit (1886–1896) (Jena: Gustav Fischer, 1940), 35–78, on 40–1.Google Scholar
  76. 52.
    Schomerus, Geschichte, 104–5.Google Scholar
  77. 53.
    In addition to the discussion in Auerbach, Abbe, 238–76, and in Schomerus, Geschichte, 100–26, see also, i.a., Abbe’s Gesammelte Abhandlungen 5, Werden und Wesen der Carl-Zeiss-Stiftung an der Hand von Briefen und Dokumenten aus der Gründungszeit (1886–1896) dargestellt von Fr. Schomerus (Jena: Gustav Fischer, 1940), 2nd ed. (Stuttgart: Gustav Fischer, 1955); and Ernst Wuttig, “Die Carl Zeiss-Stiftung in Jena und ihre Bedeutung für die Forschung”, in Ludolph Brauer, et al., eds., Forschungsinstitute. Ihre Geschichte, Organisation und Ziele, 2 vols. (Hamburg: Paul Härtung, 1930), 7:441–9.Google Scholar
  78. 54.
    Schomerus, Geschichte, 114–16.Google Scholar
  79. 55.
    Auerbach, Abbe, 324; and idem, The Zeiss Works, 144.Google Scholar
  80. 56.
    Auerbach, Abbe, 324–7. For example, the Stiftung supported the physics institute, giving it an entirely new building in 1902; a new chair in technical physics and mathematics; and, as mentioned above, a new Institute for Technical Chemistry. It also provided support for new institute buildings or major expansions for minerology, hygiene, pathological anatomy, botany, zoology, anatomy, pharmacology, chemistry, as well as the university’s library and surgical clinic. (See anon., “Hauptsächlichste Leistungen der Carl Zeiss-Stiftung für die Universität Jena”, in Abbe’s Gesammelte Abhandlungen 5:278–9; Steinmetz, et al., eds., Geschichte der Universität Jena, 478–9, 482–3, 502–3; Auerbach, Abbe, 326; and idem, The Zeiss Works, 126–7.)Google Scholar
  81. 57.
    Biographical information about Zsigmondy is drawn from Alfred Lottermoser, “Zsigmondy, Richard”, in Deutsches Biographisches Jahrbuch 11 (1929):335–8; and “Chemistry 1925. Richard Adolf Zsigmondy”, in Nobel Lectures including Presentation Speeches and Laureates’ Biographies. Chemistry. 1922–1941 (Amsterdam, London, New York: Elsevier, 1966), 39–59, which includes Zsigmondy’s Nobel Prize address: “Properties of Colloids. Nobel Lecture, December 11, 1926”.Google Scholar
  82. 58.
    On Kundt and his style of physics see David Cahan, “From Dust Figures to the Kinetic Theory of Gases: August Kundt and the Changing Nature of Experimental Physics in the 1860s and 1870s”, Annals of Science 47 (1990): 151–72.CrossRefGoogle Scholar
  83. 59.
    Zsigmondy quoted in Lottermoser, “Zsigmondy”, 335–6.Google Scholar
  84. 60.
    Zsigmondy to Svante Arrhenius, 12 Dec 1894, in Alois Kernbauer, ed., Svante Arrhenius’ Beziehungen zu Österreichischen Gelehrten: Briefe aus Österreich an Svante Arrhenius (1891–1926) (Graz: Akademische Druck- u. Verlagsanstalt, 1988) (= Publikationen aus dem Archiv der Universität Graz, Band 21), 98.Google Scholar
  85. 61.
    Richard Zsigmondy, Zur Erkenntnis der Kolloide. Über irreversible Hydrosole und Ultramikroskopie (Jena: Gustav Fischer, 1905), translated into English as Colloids and the Ultramicroscope. A Manual of Colloid Chemistry and Ultramicroscopy, trans. Jerome Alexander (New York: John Wiley; London: Chapman & Hall, 1909), quotes (from the English edition) on vii and v-vi, respectively.Google Scholar
  86. 62.
    The Chemistry of Colloids, Part I, Richard Zsigmondy, Chemistry of Colloids, trans. Ellwood B. Spear; Part II, Ellwood B. Spear (with a chapter by John Foote Norton), Industrial Colloidal Chemistry (New York: John Wiley; London: Chapman & Hall, 1917), 5–6.Google Scholar
  87. 63.
    In chapter 3 of Colloids and the Ultramicroscope, Zsigmondy cited extensive sections of Graham’s classic papers of 1861 and 1862 on colloids.Google Scholar
  88. 64.
    Zsigmondy, Colloids and the Ultramicroscope, 11, 17.Google Scholar
  89. 65.
    Idem, “Properties of Colloids”, 47–8.Google Scholar
  90. 66.
    Ibid., 46–8 (quotes on 47–8); and idem, Colloids and the Ultramicroscope, 65–89.Google Scholar
  91. 67.
    Zsigmondy, “Properties of Colloids”, 48–9. The third question concerned the low level of osmotic energy emitted in gold solutions; it was later addressed experimentally by Svedberg and Perrin.Google Scholar
  92. 68.
    Zsigmondy, Colloids and the Ultramicroscope, 97–8.Google Scholar
  93. 69.
    Ibid., 98–100, quote on 98. Turner, “The Microscope as a Technical Frontier in Science”, 189–90, shows that the highest resolution achieved prior to 1900 was just under 0.2 µm.Google Scholar
  94. 70.
    Zsigmondy, Colloids and the Ultramicroscope, 100.Google Scholar
  95. 71.
    Hans-Günther Körber, “Siedentopf, Henry Friedrich Wilhelm”, in Dictionary of Scientific Biography 12 (1975), ed., Charles Coulston Gillispie, 16 vols. (New York: Charles Scribners, 1970–80), 12:422–3; and Auerbach, The Zeiss Works, 142–3.Google Scholar
  96. 72.
    Schomerus, Geschichte, 154; Auerbach, The Zeiss Works, 142–3; and Feffer, “Microscopes to Munitions”, 264–6, 271, 285–90, 311.Google Scholar
  97. 73a.
    M. v. Rohr, “Erinnerungen an Ernst Abbe und den Optikerkreis um ihn”, Die Naturwissenschaften 6:22 (1918):317–22;CrossRefGoogle Scholar
  98. 73a.
    M. v. Rohr, “Erinnerungen an Ernst Abbe und den Optikerkreis um ihn”, Die Naturwissenschaften 6:23 (1918):337–42, on 339–40.CrossRefGoogle Scholar
  99. 74.
    Auerbach, Abbe, 196; and Schomerus, Geschichte, 161.Google Scholar
  100. 75.
    Zsigmondy, Colloids and the Ultramicroscope, 102, n. 1. Cf. M. v. Rohr, “Erinnerungen an Ernst Abbe und den Optikerkreis um ihn”, 341.Google Scholar
  101. 76.
    H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Grössenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser”, Annalen der Physik 70(1903), 1–39, on 1.Google Scholar
  102. 77.
    H. Siedentopf and R. Zsigmondy, “Über Sichtbarmachung und Grössenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser”, Annalen der Physik 70(1903), 39. The paper was finished in October 1902, and received by the Annalen’s editor on 13 October 1902. Cf. H. Siedentopf, “On the Rendering Visible of Ultra-Microscopic Particles and of Ultra-Microscopic Bacteria”, Journal of the Royal Microscopical Society (October 1903):573–8, who concluded his paper (578) as follows: “In conclusion I must point out that these investigations have been materially assisted by the liberal manner in which all the necessary means were placed at our disposal by the firm Carl Zeiss of Jena”.Google Scholar
  103. 78.
    Zsigmondy, Colloids and the Ultramicroscope, 102.Google Scholar
  104. 79.
    Zsigmondy to Arrhenius, 1 Mar 1909, in Kernbauer, ed., Arrhenius’ Beziehungen, 221. Yet Zsigmondy did not fail to credit Siedentopf for his original contribution in developing the instrument into a working device (above all, for introducing the slit), in developing the theory of rendering the particles visible, and in calculating probable visibility limits for the particles; cf. Zsigmondy, Colloids and the Ultramicroscope, 100–1.Google Scholar
  105. 80.
    In their first, and classic, paper describing the ultramiscrope and its use, “Über Sichtbarmachung”, 2, Siedentopf and Zsigmondy explicitly noted the division of labor.Google Scholar
  106. 81.
    Ibid., 1–2 (quote on 2).Google Scholar
  107. 82.
    Ibid., 2–3.Google Scholar
  108. 83.
    Ibid., 4–6 (quote on 4–5).Google Scholar
  109. 84.
    Ibid., 6–8.Google Scholar
  110. 85.
    For details on this see ibid., 2–16; Siedentopf, “On the Rendering Visible”, 574–7; and Zsigmondy, Colloids and the Ultramicroscope, 103–8, 111–23.Google Scholar
  111. 86.
    Siedentopf and Zsigmondy, “Über Sichtbarmachung”, 8–10 (quote on 10).Google Scholar
  112. 87.
    Ibid., 11–12, 14–15.Google Scholar
  113. 88.
    Ibid., 16–29 (quote on 17). One potentially important source of error was that occasioned by the straightforward counting of the number of particles within a given area. Zsigmondy argued against committing such an error by introducing an old result that Abbe had arrived at (in 1878) for the probable relative deviation in counting blood corpuscles. (Ibid., 23–4.)Google Scholar
  114. 89.
    Along with the Zeiss Werke, another industrial source that played a (minor) role in the first use of the ultramicroscope was the glass factory of J.L. Schrieber, in Zombkowice, Russia, which produced the gold ruby glasses. (Ibid., 30; and Zsigmondy, Colloids and the Ultramicroscope, 101.)Google Scholar
  115. 90.
    Siedentopf and Zsigmondy, “Über Sichtbarmachung”, 31–2, 35, 37–8.Google Scholar
  116. 91.
    Zsigmondy, Colloids and the Ultramicroscope, 160–4.Google Scholar
  117. 92.
    Ibid., 134–40, quotes on 134–5.Google Scholar
  118. 93a.
    Among the several accounts of the history of Brownian motion during the first decade of the twentieth century, see especially G.L. de Haas-Lorentz, Die Brownsche Bewegung und einige verwandte Erscheinungen (Braunschweig: Friedr. Vieweg, 1913)Google Scholar
  119. 93b.
    Stephen G. Brush, “A History of Random Processes. I. Brownian Movement from Brown to Perrin”, Archive for History of Exact Sciences 5 (1968):1–36CrossRefGoogle Scholar
  120. 93c.
    Mary Jo Nye, Molecular Reality: A Perspective on the Scientific Work of Jean Perrin (London: Macdonald; New York: American Elsevier, 1972)Google Scholar
  121. 93d.
    Abraham Pais, ‘Subtle is the Lord…’: The Science and the Life of Albert Einstein (Oxford, New York, and Toronto: Oxford University Press, 1982), 79–107Google Scholar
  122. 93e.
    John Stachel, et al., “Einstein on Brownian Motion”, in Stachel, et al., eds., The Collected Papers of Albert Einstein, vol. 2, The Swiss Years: Writings, 1900–1909 (Princeton: Princeton University Press, 1989), 206–22.Google Scholar
  123. 94a.
    Albert Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Annalen der Physik 17 (1905):549–60CrossRefGoogle Scholar
  124. 94b.
    Albert Einstein, “Zur Theorie der Brownschen Bewegung”, Annalen der Physik 19 (1906):371–81CrossRefGoogle Scholar
  125. 94c.
    Albert Einstein, “Theoretische Bemerkungen über die Brownsche Bewegung”, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 13 (1907):41–2Google Scholar
  126. 94d.
    Albert Einstein, “Elementare Theorie der Brownschen Bewegung”, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 14 (1908):235–9Google Scholar
  127. 94e.
    Marian von Smoluchowski, “Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen”, Annalen der Physik 21 (1906):756–80. In 1908, Paul Langevin gave a new derivation of Einstein’s and Smoluchowski’s equivalent results, “Sur la théorie du mouvement brownien”, Comptes rendus 146 (1908):530–3.CrossRefGoogle Scholar
  128. 95.
    Einstein, “Zur Theorie der Brownschen Bewegung”, 334; and Stachel, et al., “Einstein on Brownian Motion”, 211.Google Scholar
  129. 96.
    Paris: Masson & Cie, 1906.Google Scholar
  130. 97.
    Cotton and Mouton, Les Ultramicroscopes, 38–57.Google Scholar
  131. 98a.
    Per Stenius, “Svedberg’s Early Studies in Colloid Chemistry”, in Bengt Rânby, ed., Physical Chemistry of Colloids and Macromolecules (Oxford, London, and Edinburgh: Blackwell Scientific, 1987), 17–21, on 18–19Google Scholar
  132. 98b.
    Anders Lundgren, “The Ideological Use of Instrumentation: The Svedberg, Atoms, and the Structure of Matter”, in Center on the Periphery: Historical Aspects of 20th-century Swedish Physics, ed. Svante Lindqvist (Canton, MA: Science History, 1993), 327–45, esp. 327–30, 333. In September 1903, not long after the appearance of Siedentopf and Zsigmondy’s article in the Annalen, the Zeiss Werke issued its first catalogue for the ultramicroscope. One could buy either the entire apparatus at a cost of 958 marks or one could buy individual components and so construct one’s own ultramicroscope. (Kostenanschlag über den Apparat zur Untersuchung ultramikroskopischer Teilchen nach Siedentopf und Zsigmondy [1903]. Carl Zeiss, Jena. No. 008. September 1903. I thank Frau Dipl-Ing. Edith Hellmuth, Leiterin des Zentralarchiv, Jenoptik, Jena, for supplying me with copies of this and other catalogues for Zeiss ultramicroscopes. In 1904, Zeiss issued a fourteen-page, English-language catalogue [without prices]: Description of Optical Appliances to Facilitate Visual Perception of Ultramicroscopic Particles [N.p. {Jena?}: N.p., 1904].) As one entire unit, the ultramicroscope was probably the most expensive microscope of its day. Yet since colloid and other chemists, as well as biologists and medical scientists, already owned their own microscopes, some doubtless chose only to buy select individual components in order to create their own ultramicroscope. As early as circa 1905, Auerbach claimed that “[a]lthough these ‘ultramicroscopes’ have been placed on the market for scarcely a year, biologists and medical men have already achieved great results by their aid, to which fact the very large demand that has arisen for these instruments is undoubtedly to be attributed”. (Auerbach, The Zeiss Works, 44.)Google Scholar
  133. 99.
    The Svedberg, “Über die Eigenbewegung der Teilchen in kolloidalen Lösungen”, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 12 (1906):853–60.Google Scholar
  134. 100.
    The Svedberg, “Über die Eigenbewegung der Teilchen in kolloidalen Lösungen. Zweite Mitteilung”, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 12 (1906):909–10.Google Scholar
  135. 101.
    Einstein, “Theoretische Bemerkungen über die Brownschen Bewegung”, quickly pointed out this and other misunderstandings by Svedberg. Later, Jean Perrin also criticized Svedberg’s several misunderstandings and the shortcomings of his work; see Perrin’s “Mouvement brownien et réalité moléculaire”, Annales de Chimie et de Physique 18 (1909): 1–114. For a full critique of Svedberg’s misconceptions concerning Einstein’s molecular kinetic theory and his confusions deriving there-from, see Milton Kerker, “The Svedberg and Molecular Reality”, Isis 67:237 (1976):190–216. See also Nye, Molecular Reality, 97, 118, 122–5, 127; Stenius, “Svedberg’s Early Studies”, 17–18, 20; and Stachel, et al., “Einstein on Brownian Motion”, 219–20.CrossRefGoogle Scholar
  136. 102.
    For references to Perrin’s numerous original papers and for analysis of his work see Nye, Molecular Reality, 84–5, 89, 97–142, and passim. See also Haas-Lorentz, Die Brownsche Bewegung, 31–44; and Brush, “History of Random Processes”, 30–5.Google Scholar
  137. 103.
    W[ilhelm]. O[stwald]., review of Zsigmondy’s Zur Erkenntnis der Kolloide. Über irreversible Hydrosole und Ultramikroskopie, in Zeitschrift für physikalische Chemie, Stöichiometric, und Verwandtschaftslehre 57 (1907):383.Google Scholar
  138. 104.
    Wilhelm Ostwald, “Bücherschau”, Zeitschrift für physikalische Chemie, Stöichiometric und Verwandtschaftslehre 64 (1908):509; and idem, “Vorbericht”, to his Grundriss der physikalischen Chemie (Grossbothen: 1908), cited in Nye, Molecular Reality, 151–2.Google Scholar
  139. 105.
    D. Vorländer to the Nobel-Komitee der Chemie…, 24 Jan 1913, “1913 Kemi”, in RSASS.Google Scholar
  140. 106.
    Georg Wiegner to Kungl. Vetenskapsakademiens Nobelkommitté för Kemi, 2 Jan 1915, “1915 Kemi”, in RSASS.Google Scholar
  141. 107.
    R. Wegscheider to the Nobelkomitee für Chemie, 25 Jan 1918, “1919 Kemi”; in RSASS.Google Scholar
  142. 108.
    W. Ostwald to the Nobelkomitee für Chemie, 10 Jan 1921, “1921 Kemi”; W Ostwald to das Nobelkomitee für Chemie, received 4 Dec 1922, “1923 Kemi” (quote); and W. Ostwald to das Nobelkomitee für Chemie, 12 Jan 1924, “1924 Kemi”, in RSASS.Google Scholar
  143. 109.
    Hugo R. Kruyt to Messieurs, “1921 Kemi”, in RSASS. He wrote: “Above all, Zsigmondy put colloidal chemistry on a firm basis through the part that he took in the discovery of the ultramicroscope (1903), after having done some remarkable research on colloidal gold (1898 and following)”.Google Scholar
  144. 110.
    Georg Wiegner to the Nobelkomitée für Chemie, 19 Dec 1921, “1922 Kemi”, in RSASS.Google Scholar
  145. 111.
    K. Alb. Vesterberg to Kungl. Vetenskapsakademiens Nobelkommité for Kemi, 29 Jan 1923, “1923 Kemi”, in RSASS.Google Scholar
  146. 112.
    A. Kötz to die Königliche Akademie der Wissenschaften in Stockholm, 20 Jan 1924, “1925 Kemi”, in RSASS.Google Scholar
  147. 113.
    Viktor Rothmund to the Nobelkomitée für Chemie in Stockholm, 19 Dec 1925; The Svedberg to the Kungl. Vetenskapsakademiens Nobelkommitté för Kemi, 30 Jan 1926; and G. Meyer to Nobelkomitee für Chemie, 27 Jan 1926, all in “1926 Kemi”, in RSASS.Google Scholar
  148. 114.
    Nobel Lectures, 44.Google Scholar
  149. 115.
    Körber, “Siedentopf”, 422–3.Google Scholar
  150. 116.
    Zsigmondy, Colloids and the Ultramicroscope, 101–2.Google Scholar
  151. 117.
    Zsigmondy, Colloids and the Ultramicroscope, 3–5.Google Scholar
  152. 118.
    For another study of the relationship between the local culture of a laboratory and its influence on the outside world see Simon Schaffer, “Late Victorian Metrology and Its Instrumentation: A Manufactory of Ohms”, in Robert Bud and Susan E. Cozzens, eds., Invisible Connections: Instruments, Institutions, and Science (Bellingham, Wash.: SPIE Optical Engineering Press, 1992), 23–56.Google Scholar
  153. 119a.
    Cf., e.g., Gooding, Pinch, and Schaffer, eds., Uses of Experiment, 10, who point to this conclusion in the work of J.L. Heilbron, Electricity in the 17 th and 18th Centuries: A Study of Early Modern Physics (Berkeley and London: University of California Press, 1979)Google Scholar
  154. 119b.
    Ian Hacking, Representing and Intervening: Introductory Topics in the Philosophy of Natural Science (Cambridge, London, New York: Cambridge University Press, 1983)Google Scholar
  155. 119c.
    D.J. de S. Price, “Of Sealing Wax and String”, Natural History 93 (1984):48–56.Google Scholar
  156. 119d.
    Cf., too, Peter Galison, How Experiments End (Chicago and London: University of Chicago Press, 1987).Google Scholar
  157. 120.
    Cf. Gooding, Pinch, and Schaffer, eds., Uses of Experiment, 2–5.Google Scholar
  158. 121.
    Speaking of the metallurgical laboratory at the Werke, Auerbach wrote circa 1905: “New constructions, and special orders for apparatus for the purposes of research and demonstration, of which a large number are received annually from savants, are, of course, treated specially. Although these special orders, in many cases, do not even pay the cost of execution, they are, notwithstanding, invariably accepted for the sake of any new ideas which they may suggest, if they come legitimately within the province of the undertaking [i.e., the Werke]”. (Auerbach, The Zeiss Works, 80.)Google Scholar
  159. 122.
    Nathan Rosenberg, “Scientific Instrumentation and University Research”, Research Policy 21 (1992):381–90, esp. 381–2.CrossRefGoogle Scholar
  160. 123.
    See above, 87–8 and 103–4.Google Scholar
  161. 124.
    Cf. in this regard the general argument of Nathan Rosenberg, “Basic Research in Industrial Context”, in Le Università e le Scienze: Prospettive Storiche e Attuali, ed. Giuliano Pancaldi (Bologna: Aldo Martello, 1993), 233–40.Google Scholar
  162. 125a.
    George Wise, “Ionists in Industry: Physical Chemistry at General Electric, 1900–1915”, Isis 74 (1983):7–21, on 7–8.Google Scholar
  163. 125b.
    Wise cites the work of Charles Rosenberg, “Science and Social Values in Nineteenth-Century America”, in idem, No Other Gods: On Science and American Social Thought (Baltimore and London: The Johns Hopkins University Press, 1976), 135–52Google Scholar
  164. 125c.
    Stuart W Leslie, “Charles F. Kettering and the Copper-Cooled Engine”, Technology and Culture 20 (1979):752–78CrossRefGoogle Scholar
  165. 125d.
    Leonard Reich, “Industrial Research and the Pursuit of Corporate Security: The Early Years of Bell Labs”, Business History Review 54 (1980):503–29CrossRefGoogle Scholar
  166. 125e.
    Lillian Hoddeson, “The Emergence of Basic Research in the Bell Telephone System”, Technology and Culture 22 (1981):512–44CrossRefGoogle Scholar
  167. 125f.
    John W Servos, “The Industrial Relations of Science: Chemical Engineering at MIT, 1900–1939”, Isis 71 (1980):531–49.Google Scholar
  168. 126.
    On the complexity of the relations of science and technology in Imperial Germany see Cahan, An Institute for an Empire. Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • David Cahan
    • 1
  1. 1.University of Nebraska-LincolnUSA

Personalised recommendations