Advertisement

Ernst Abbe, Carl Zeiss, and the Transformation of Microscopical Optics

  • Stuart M. Feffer
Chapter
  • 151 Downloads
Part of the Archimedes book series (ARIM, volume 1)

Abstract

For most of the nineteenth century, the high-powered compound microscope was a piece of technology that artisans could build, microscopists could use, but physicists could not understand. Like the steam engine earlier in the nineteenth century and several different electrical technologies (such as the telegraph cable) toward its middle, the microscope became as much an object of study as a tool of investigation or trade. In all three of these cases, those who would bring knowledge of academic experimental or theoretical physics to bear on practical problems had to face the — often well justified — resistance of more traditional practitioners whose practical and empirical knowledge of these technologies had served them well in the past.1 The taming of the microscope by physicists required more than a theoretical account — a physical theory of microscopical optics had to convince microscopists that instruments designed according to that theory would be superior.

Keywords

Geometrical Optic Microscope Objective Spherical Aberration Optical Instrument Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1a.
    For more on electrical technology and especially telegraph cables, see C. Smith and M. Norton Wise, Energy and Empire: A biographical study of Lord Kelvin (Cambridge: Cambridge University Press, 1989)Google Scholar
  2. 1b.
    D.S.L. Cardwell, James Joule: A biography (Manchester: Manchester University Press, 1989)Google Scholar
  3. 1c.
    B.J. Hunt, “Michael Faraday, Cable telegraphy and the rise of field theory”, History of Technology 13 (1991), 1–19.Google Scholar
  4. 1d.
    For more on the relationship between 19th century science and technology, especially in the German context, see A. Beyerchen, “On the stimulation of excellence in Wilhelmian science”, in J.R. Dukes and J. Remak, Another Germany: A reconsideration of the imperial era (Boulder: Westview, 1988), 139–68Google Scholar
  5. 1e.
    D. Cahan, An institute for an empire: The Physikalisch-Technische Reichsanstalt, 1871–1918 (Cambridge: Cambridge University Press, 1989)Google Scholar
  6. 1f.
    J.A. Johnson, The Kaiser’s chemists: Science and modernization in imperial Germany (Chapel Hill: University of North Carolina Press, 1990)Google Scholar
  7. 1g.
    R. Vierhaus and B. vom Brocke, eds., Forschung im Spannungsfeld von Politik und Gesellschaft: Geschichte und Struktur der Kaiser-Wilhelm-/Max-Planck-Gesellschaft (Stuttgart: Deutsche Verlags-Anstalt, 1990).Google Scholar
  8. 2.
    See Stuart M. Feffer, “Microscopes to Munitions: Ernst Abbe, Carl Zeiss, and the transformation of technical optics, 1850–1914”, Ph.D. dissertation, University of California, 1994, chapter 5.Google Scholar
  9. 3.
    Feffer (1994), pp. 32–43.Google Scholar
  10. 4a.
    For accounts of early attempts to achromatize the microscope, see H. de Martin and W. de Martin, Vier Jahrhunderte Mikroskope (Wiener Neustadt: Weilburg, 1983), 24Google Scholar
  11. 4b.
    S. Bradbury, The evolution of the microscope (Oxford: Pergamon, 1967), esp. 164–171Google Scholar
  12. 4c.
    G. L’E. Turner, “Micrographia Historica: The study of the history of the microscope”, in Essays on the history of the microscope (Oxford, 1980), 1–29, esp. 12Google Scholar
  13. 4d.
    G. L’E. Turner, “The microscope as a technical frontier in science”, in Essays on the history of the microscope (Oxford, 1980)., 159–183, esp. 162.Google Scholar
  14. 5a.
    On Fraunhofer, see M. v. Rohr, Joseph Fraunhofers Leben, Leistungen und Wirksamkeit (Leipzig: Akademie Verlagsgesellschaft: 1929)Google Scholar
  15. 5b.
    G.D. Roth, Joseph von Fraunhofer: Handwerker-Forscher-Akademiemitglied (Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1976)Google Scholar
  16. 5c.
    M. Jackson, “Artisanal knowledge and experimental natural philosophers: The British response to Joseph Fraunhofer and the Bavarian usurpation of their optical empire”, Studies in History and Philosophy of Science 25 (1994): 549–576.CrossRefGoogle Scholar
  17. 5d.
    For one microscopist’s evaluation of Fraunhofer’s instruments, see H. v. Mohl, Mikrographie, oder Anleitung zur Kenntniss und zum Gebrauche des Mikroskops (Tübingen: L.F. Fues, 1846), 66, 71–5, 337.Google Scholar
  18. 6a.
    Bradbury (1967), 180–1, 184–5; C. Chevalier, Des microscopes et de leur usage (Paris: Proux, 1839)Google Scholar
  19. 6b.
    J. Fresnel, “Rapport sur le Microscope achromatique de M. Selligue”, Annnales des sciences naturelles 3 (1824): 345–54.Google Scholar
  20. 7a.
    J.J. Lister, “On some properties in achromatic object-glasses applicable to the improvement of the microscope”, Philosophical transactions of the Royal Society of London 120 (1830): 187–200CrossRefGoogle Scholar
  21. 7b.
    Turner, “Micrographia Historica” (1980), 13–14.Google Scholar
  22. 8a.
    J. Lister, “Obituary notice of the late Joseph Jackson Lister, FRS, ZS, with special reference to his labours in the improvement of the achromatic microscope”, Monthly Microscopical Journal 3 (1870): 134–43Google Scholar
  23. 8b.
    G L’E. Turner, God bless the microscope: A history of the Royal Microscopical Society over 150 years (Oxford: Royal Microscopical Society, 1989), 9–13.Google Scholar
  24. 9.
    On the training of microscope makers, see Feffer (1994), 19–21.Google Scholar
  25. 10a.
    J. Wittig, “Friedrich Körner und die Anfange des wissenschaftlichen Gerätebaues in Jena in der ersten hälfte des 19. Jahrhunderts”, NTM 18 (1981): 17–28Google Scholar
  26. 10b.
    H. Koch, “Die jenaischen Universitäts-Mechanici”, Zeiss-Werkzeitung 11 (1936): 34–7Google Scholar
  27. 10c.
    H. Koch, “Johann Friedrich Braunau: der Amtsvorgänger von Carl Zeiss als Universitätsmechaniker”, Zeiss-Werkzeitung 18 (1945): 9–10. Several other universities had similar arrangements with instrument makers.Google Scholar
  28. 11.
    H.A. Willam, Carl Zeiss, 1816–1888: Sechstes Beiheft der Tradition: Zeitschrift für Firmengeschichte und Unternehmerbiographie (Munich: F. Bruckmann, 1967), 15–18.Google Scholar
  29. 12.
    Willam (1967), 19–21.Google Scholar
  30. 13.
    P. Blume, Betrachtungen zur Entwicklung der Technik und Technologie des Feinmechanischoptischen Gerätebaues bei Carl Zeiss Jena im Zeitraum 1846–1945, Geschictskommission der IKL des SED des VEB Carl Zeiss Jena, BACZ, no number, no date, 39; “Manual I & II”, HStA Weimar, I/3/1736.Google Scholar
  31. 14.
    M. v. Rohr, “Zur Geschichte der Zeissischen Werkstätte bis zum Tode Ernst Abbes”, Forschungen zur Geschichte der Optik: Beilage zur Zeitschrift fir Instrumentenkunde 2 (1936–38):1–119, esp. 11–12.Google Scholar
  32. 15.
    Willam (1967), 58.Google Scholar
  33. 16a.
    H.C. Freifsleben, “Seidel, Phillip Ludwig von”, in C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribners, 1970–1978), vol. XII, 289–90Google Scholar
  34. 16b.
    C. Jungnicki and R. McCorrmach, Intellectual mastery of nature: Theoretical physics from Ohm to Einstein, vol. I, The torch of mathematics, 1800–1870 (Chicago: Univ of Chicago, 1986), 275–8Google Scholar
  35. 16c.
    M. v. Rohr “Die Voigtlan-dërsche optische Werkstätte und ihre Umwelt”, Zeitschrift fur Instrumentenkunde 45 (1925), 480.Google Scholar
  36. 16d.
    See also the reprints appended to A. Steinheil and E. Voigt, Handbuch der angewandten Optik (Leipzig: B.G. Teubner, 1891)Google Scholar
  37. 16e.
    and the historical notes in M. v. Rohr, ed., Die Bilderzeugung in optischen Instrumenten vom Standpunkte der geometrischen Optik (Berlin: Julius Springer, 1904).Google Scholar
  38. 17a.
    Erményi, Dr. Josef Petzvals Leben und Verdienste (Halle: Knapp, 1903), 1–25Google Scholar
  39. 17b.
    J. Petzval, Bericht über die Ergebnisse einiger dioptrischer Untersuchungen (Pesth: Hartleben, 1843), passim. Google Scholar
  40. 18.
    H. Harting, Zur Geschichte der Familie Voigtlander, ihrer Werkstätten und ihrer Mitarbeiter (Braunschweig: Voigtlander & Sohne AG, 1925), 25–36; M. v. Rohr (1925), 441–5.Google Scholar
  41. 19a.
    Edmund Hartnack, for instance, took on Polish mathematician Adam Prazmowski in 1864. See J.C. Poggendorf, Biographisch-literarisches Handwörterbuch der Geschichte der exacten Wissenschaften (Leipzig, 1863), vol. II, 522Google Scholar
  42. 19b.
    B.W. Feddersen and A.J. von Oettingen, J.C. Poggendorf’s biographisch-literarisches Handwörterbuch der Geschichte der exacten Wissenschaften (Leipzig: J.A. Barth, 1898), 3rd edition, vol. II, 1065Google Scholar
  43. 19c.
    H. Weil, “Hartnack-Kurzbiographie”, Sammelinfo 2, ed. By H. Baden, no date, in BACZ, no accession number. Zeiss attempted to manufacture the designs of Weimar mathematician Friedrich Wilhelm Barfuss, but these efforts apperently were unsuccessful.Google Scholar
  44. 19d.
    See F.W. Barfuss, Optik, Catoptrik und Dioptrik (Weimar: Fr. Voigt, 1839)Google Scholar
  45. 19e.
    F.W Barfuss, “Ueber das Mikroskop”, Astronomische Nachrichten 20 (1843): 17–24, 40–48CrossRefGoogle Scholar
  46. 19f.
    RA. Nobert, “Ueber die Prüfung und Vollkommenheit unserer jetzigen Mikroskope”, Annalen der Physik 67 (1846): 173–85Google Scholar
  47. 19g.
    F.W Barfuss, “Ueber die Construction zusammengesetzter Microscope”, Annalen der Physik 68 (1846):88–91Google Scholar
  48. 19h.
    Willam (1967), 17; Wittig (1981), 24. Barfuss’ book also went through a second edition: H. Gieswald, F.W. Barfuss’s populäres Lehrbuch der Optik, Katoptrik und Dioptrik (Weimar: B.F.Voigt, 1860).Google Scholar
  49. 20.
    The physicists who published about geometrical optics had their major orientation toward astronomical instrumentation. Of 22 authors of papers on the theory of optical instruments, 18 held university or other academic positions. Of these, eight had held positions with an observatory or as a professor of astronomy at some point in their careers, and 11 published articles on astronomical observations, aspects of theoretical astronomy, or geodesy. None was a professor in botany, anatomy, physiology, medicine or any other field in which microscope use was common. Only one ever published a paper describing any results from the use of a microscope, and this was a piece dating from the 1870s (by G.G. Stokes) on an investigation of crystals. For bibliography I am relying here on the “Autorenregister” and “Historische Notizen” from v. Rohr, (1904) and the several editions of Poggendorf’s biographisch-literarisches Wörterbuch for information on the careers of the authors. Even though the collection might be regarded as arbitrary or selective, the point remains: most of those with mathematical training and an interest in geometrical optics tended to come from backgrounds in astronomy, not biology, and we should not be surprised that their orientation was heavily skewed toward astronomical instrumentation.Google Scholar
  50. 21.
    M.J. Schieiden, Grundzüge der wissenschaftlichen Botanik nebst einer methodologischen Einleitung als Anleitung zum Studium der Pflanze, Erster Theil (Leipzig: W Engelmann, 1842), 144–5.Google Scholar
  51. 22.
    T. Lenoir, The strategy of life: Teleology and mechanics in nineteenth-century German biology (Chicago: Univ of Chicago, 1982), 112–155.Google Scholar
  52. 23.
    Turner, “The microscope as a technical frontier” (1967), 161–77.Google Scholar
  53. 24a.
    E. Cittadino, Nature as the laboratory: Darwinian plant ecology in the German Empire, 1880–1900 (Cambridge: Cambridge Univ., 1990), 14–16Google Scholar
  54. 24b.
    J. Maienschein, “Cell theory and development”, in R.C. Olby, G.N. Cantor, J.R.R. Christie, and M.S.J. Hodge, Companion to the history of modern science (London: Routledge, 1989), 357–73; Bradbury (1967), 201–2.Google Scholar
  55. 25.
    Several infamous episodes are mentioned in Schleiden (1842), 137–9 and P. Harting, Das Mikroskop: Theorie, Gebrauch, Geschichte und gegenwärtiger zustand desselben, translated by F.W. Theile, (Braunschweig: Vieweg, 1859), 332–3.Google Scholar
  56. 26.
    Cittadino (1990), 18.Google Scholar
  57. 27.
    Schleiden (1842), 112–4.Google Scholar
  58. 28.
    Schleiden (1842), 136–7.Google Scholar
  59. 29a.
    R. Virchow, “Ueber die Reform der pathologischen und therapeutischen Anschauungen durch die mikroskopischen Untersuchungen”, Virchow’s Archiv fur pathologische Anatomie und Physiologie und für klinische Medicin 1 (1847): 207–255, on 207–8.CrossRefGoogle Scholar
  60. 29b.
    See also R. Virchow, “Cellular-Pathologie”, Virchow’s Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 8 (1855): 3–39, esp. 3–9.CrossRefGoogle Scholar
  61. 30.
    Another line of micrographic texts can be found descending from Theodor Schwann, another early cell theorist. See E. Kaiser, “Ueber die Entwicklung und gegenwärtige Stellung der Mikroskopie in Deutschland”, Zeitschrift für Mikroskopie 1 (1877–78): 1–9, 33–41, 97–111, 161–75, 225–36, 257–72.Google Scholar
  62. 31.
    B. Bracegirdle, A history of microtechnique (Ithaca: Cornell, 1978), passim. Google Scholar
  63. 32.
    Harting (1859), 79–83Google Scholar
  64. 33.
    They usually translated Goring’s “penetrating power” as “penetrierende” or “resolvierende Kraft”. Harting specifically cited both Goring and Herschel in introducing the vocabulary in his book, using “Definierende Kraft” or “Begrenzungsvermögen” for Goring’s “defining power”, but preferring the term “Unterscheidungsvermögen” for “penetrating power”.Google Scholar
  65. 34.
    Harting (1859), 250.Google Scholar
  66. 35.
    L. Dippel, Das Mikroskop und seine Anwendung (Braunschweig: Vieweg, 1867), 81–2.Google Scholar
  67. 36.
    Nägeli and Schwendener (1867), 80–81.Google Scholar
  68. 37a.
    F. Auerbach, Ernst Abbe: Sein Leben, sein Wirken, seine Persönlichkeit nach den Quellen und aus eigener Erfahrung geschildert (Leipzig: Akademische Verlagsgesellschaft, 1918)Google Scholar
  69. 37b.
    52–89. On the special character of Weber’s experimental program, see J. Buchwald, The Creation of Scientific Effects (Chicago: University of Chicago Press, 1994), 19–20.Google Scholar
  70. 38a.
    On Weber’s seminar and its relation to physics pedagogy in Germany, see K. Olesko, Physics as a calling: Discipline and practice in the Königsberg seminar for physics (Ithica: Cornell, 1991), esp. 409–10.Google Scholar
  71. 38b.
    On Abbe’s own experiences at Göttingen, see E. Abbe to C. Martin, 26 Dec 1859 and Abbe to Martin, 11 Feb 1860, in E. Abbe,Briefe an seine Jugend- und Studienfreunde Carl Martin und Harald Schütz, 1858–1865,V Wahl and J. Wittig, eds., (Berlin: Akademie-Verlag, 1986), 9–15.Google Scholar
  72. 39.
    On Meyerstein and Abbe’s friend, see Abbe (1986), xvii; Auerbach (1918), 91. On Abbe and Meyerstein, see Abbe to H. Schütz, 13 Apr 1861, Abbe (1986), 69–70; Abbe to Schütz, 23 Jun 1861, Abbe (1986), 94–8; Abbe to Schütz, 4 Sept 1861, Abbe (1986), 119–22. For Abbe’s lack of interest in secondary education careers, see Abbe to Martin, 25 Jul 1860, Abbe (1986), 30–33. For Abbe’s Habilitation see E. Abbe, “Ueber die Gesetzmässigkeit in der Vertheilung der Fehler bei Beobachtungsreihen”, Gesammelte Abhandlungen, vol. II, 55–81. When Abbe began teaching physics at Jena as a young Privatdozent, he told a friend that he felt much more at home with the theory of measuring instruments than he did teaching even basic mechanics; see Abbe to Schütz, 12 Dec 1863, Abbe (1986), 267–75; Auerbach (1918), 122.Google Scholar
  73. 40.
    For Abbe and Listing’s lectures, see Abbe to Martin, 11 Feb 1860, Abbe (1986), 12–5. For Abbe and the Göttingen observatory, see Abbe to Schütz, 23/25 Apr 1861 and Abbe to Martin, 6 May 1861, Abbe (1986), 71–6.Google Scholar
  74. 41a.
    J.B. Listing, “Vorschlag zu ferner Vervollkommung des Mikroskops auf einem abgeänderten dioptrischen Wege”, Annalen der Physik 136 (1869): 467–72Google Scholar
  75. 41b.
    J.B. Listing, “Nachtrag betreffend die neue Construction des Mikroskops”, Annalen der Physik 136 (1869): 473–9Google Scholar
  76. 41c.
    J.B. Listing, “Notiz über ein neues Mikroskop von R. Winkel”, Annalen der Physik 142 (1871): 479–80.Google Scholar
  77. 42.
    H. Helmholtz, “Die theoretische Grenze für die Leistungsfähigkeit der Mikroskope”, Annalen der Physik Jubelband (1874): 557–584, esp. 561–570.Google Scholar
  78. 43.
    Helmholtz (1874), 579–584.Google Scholar
  79. 44.
    Helmholtz (1874), 584. Abbe’s article will be discussed in greater detail below.Google Scholar
  80. 45.
    Abbe (1986), xxvii.Google Scholar
  81. 46a.
    E. Abbe, “Ueber mikrometrische Messung mittelst optischer Bilder”, Sitzungsberichte der Jenaischen Gesellschaft fur Medicin und Naturwissenschaft (1878): 11–17, in Gesammelte Abhandlungen, vol. I, 165–72Google Scholar
  82. 46b.
    S. Czapski, “Mittheilungen aus der optischen Werkstätte von Carl Zeiss in Jena”, Zeitschrift für Instrumentenkunde 12 (1892): 185–97, esp. 185–89; v. Rohr (140), 28. For a brief discussion of contemporary methods of measuring the focal length of microscope objectives, see Nägeli and Schwendener (1867), 170–6.Google Scholar
  83. 47.
    Czapski (1892), 186–91, 196–7.Google Scholar
  84. 48.
    E. Abbe, “Neue Apparate zur Bestimmung des Brechungs- und Zerstreuungsverögens fester und flüssiger Körper”, Jenaischen Zeitschrift für Naturwissenschaft 8 (1874): 96–174, in Gesammelte Abhandlungen, vol. II, 82–164, on 82–6.Google Scholar
  85. 49.
    M. v. Rohr, Ernst Abbe (Jena: Gustav Fischer, 1940), 33.Google Scholar
  86. 50.
    C. Pulfrich, “Ueber einige von Prof. Abbe konstruierte Messapparate für Physiker”, Zeitschrift für Instrumentenkunde 12 (1892): 307–15.Google Scholar
  87. 51.
    The method, though independently developed by Löber, has also been attributed to Fraunhofer. See Auerbach (1918), 213; M. v. Rohr, “Ueber die Arbeitgemeinschaft von Carl Zeiss und Ernst Abbe bis zum Ende der siebziger Jahre, I”, Forschungen zur. Geschichte der Optik (Beilage zur Zeitschrift für Instrumentenkunde) 2 (1936–38): 160–76, esp. 161.Google Scholar
  88. 52.
    Many years later, Abbe described these attempts as a “year-long fiasco” [jahrelange Misserfolge. See E. Abbe, “Nachruf auf Carl Zeiss”, Gesammelte Abhandlungen, vol. II, 339–41, on 341.Google Scholar
  89. 53a.
    E. Abbe, “Über die Grundlagen der Lohnregelung in der Optischen Werkstätte”, Gesammelte Abhandlungen, vol. III, 119–56, esp. 138Google Scholar
  90. 53b.
    M. v. Rohr, “Über den Ausgang der Arbeitgemeinschaft von Carl Zeiss und Ernst Abbe, II”, Forschungen zur Geschichte der Optik (Beilage der Zeitschrift für Instrumentenkunde) 2 (1936–38): 253–92, on 270; v. Rohr (1940), 34–40.Google Scholar
  91. 54a.
    Carl Zeiss, “Nr. 19. Mikroskope und Nebenapparate von Carl Zeiss in Jena, 1872”, BACZ 30528; E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopische Wahrnehmung”, Max Schultze’s Archiv für mikroskopische Anatomie 9 (1873): 413–68, in Gesammelte Abhandlungen, vol. I, 45–100. For date of submission of the “Beiträge”,CrossRefGoogle Scholar
  92. 54b.
    see M. v. Rohr, Ernst Abbe (Jena: Gustav Fischer, 1940), 217.Google Scholar
  93. 55.
    Carl Zeiss, “Nr. 19. Mikroskope und Nebenapparate von Carl Zeiss in Jena, 1872”, BACZ 30528; Carl Zeiss, “Zusammengesetzte Mikroskope”, August 1861, BACZ 30528.Google Scholar
  94. 56.
    Only one objective had been given a major modification (it no longer had a removable middle lens). The objectives with wider aperture, while of a new design for Zeiss, were based closely on their narrower counterparts — in one case sharing the same front lens — and their apertures were still quite moderate when compared to current offerings from other makers. Zeiss’ three immersion objectives were completely new (Zeiss had never sold immersion systems before) and their design was based on the wider-angled dry objectives, with an additional doublet added at the back to allow for correction of spherical aberration left uncompensated by the immersed front lens. E. Abbe, Notebook containing sketches, fabrication plans, and test results for microscope objectives, 1873–1879, BACZ 12443; H. Boegehold, “Zur Geschichte der Zeissischen Mikroobjektive bis 1940”, Jenarer Jahrbuch (1951): 7–21.Google Scholar
  95. 57.
    Carl Zeiss, “Nr. 19. Mikroskope und Nebenapparate von Carl Zeiss in Jena, 1872”, BACZ 30528.Google Scholar
  96. 58.
    Even into the 1890s, most physicists only knew of Abbe’s work indirectly, through the note appended to Helmholtz’s 1874 piece on the microscope in Poggendorf’s Annalen; on the basis of those brief remarks, many assumed that the work of Abbe and Helmholtz on the theory of the microscope was largely interchangeable. Zeiss’ catalogs began explicitly referring to Abbe’s article in 1878. See Carl Zeiss, “No. 23. Illustrierter Katalog über Mikroskope und Nebenapparate aus der optischen Werkstätte von Carl Zeiss in Jena”, 1878, BACZ 30528.Google Scholar
  97. 59.
    Abbe, “Beiträge” (1873), 45–7.Google Scholar
  98. 60.
    Abbe, “Beiträge” (1873), 47.Google Scholar
  99. 61.
    Dippel, for instance, in his 1867 treatise on the microscope, repeatedly mentioned Zeiss’ work as being among the best that Germany had to offer and in 1869 wrote that his products compared favorably even with those of Hartnack. See, for instance, Dippel (1867), 184; L. Dippel, “Mikrographische Mitteilungen”, Archiv fir mikroskopische Anatomie 5 (1869): 281–94.CrossRefGoogle Scholar
  100. 62.
    Abbe, “Beiträge” (1873), 56.Google Scholar
  101. 63.
    In the article, Abbe merely summarizes the results of these experiments. He does not describe them in any detail. See Abbe, “Beiträge” (1873), 73–4.Google Scholar
  102. 64.
    Abbe, “Beiträge” (1873), 75.Google Scholar
  103. 65.
    Investigating Nägeli and Schwendener’s claims about the unused “dark space” may have led Abbe to these experiments in the first place. See E. Abbe, “Ueber die Grenzen der geometrischen Optik mit Vorbemerkungen über die Abhandlung ‘Zur Theorie der Bilderzeugung’ von Dr. R. Altmann”, Sitzungsberichte der Jenaischen Gesellschft für Medizin und Naturwissenschaft (1880): 71–109, esp. 75–80; an abridged version can be found in Abbe’s Gesammelte Abhandlungen, vol. I, 273–312. See also J. Wittig, Ernst Abbe (Leipzig: G. Teubner, 1989), 63–4.Google Scholar
  104. 66.
    Abbe, “Beiträge” (1873), 77–8.Google Scholar
  105. 67.
    Abbe, “Beiträge” (1873), 78–80.Google Scholar
  106. 68.
    Abbe, “Beiträge” (1873), 82.Google Scholar
  107. 69.
    Helmholtz (1874), 557–84. In Helmholtz’s treatment, the objects are self-luminous and diffraction is caused when the light pencil passes through the front opening of the objective. In Abbe’s treatment, the objects are not self-luminous and the diffraction occurs in the object itself — an integral part of rather than an impediment to the process of image formation.Google Scholar
  108. 70.
    Abbe, “Beiträge” (1873), 90.Google Scholar
  109. 71.
    Abbe, “Beiträge” (1873), 90–1. The trade-off between off-axis correction and aperture was essentially the same as for on-axis correction. Wider angular aperture results in increased spherical aberration which is more difficult to correct. Even when, as was the case in Abbe and Löber’s systems, aberration was corrected for a zone midway between center and edge, there would still be unacceptable residuals when apertures got too wide.Google Scholar
  110. 72a.
    There is a vast secondary literature on Ernst Abbe and the Zeiss company which takes this line — most of which was written by former students of Abbe’s and by employees of the Zeiss concern. See F. Auerbach, Das Zeisswerk und die Carl-Zeiss-Stiftung in Jena: Ihre wissenschaftliche, techniche und soziale Entwicklung und Bedeutung (Jena: G. Fischer, 1903) F. Auerbach (1918)Google Scholar
  111. 72b.
    P.G. Esche, Ernst Abbe (Leipzig, 1963)Google Scholar
  112. 72c.
    W. Mühlfriedel and E. Hellmuth, “Geschichte der optischen Werkstätte Carl Zeiss in Jena von 1875 bis 1891”, Zeitschrift fir Unternehmensgeschichte 38 (1993): 4–25Google Scholar
  113. 72d.
    M. v. Rohr, “Geschichte” (1936–1938)Google Scholar
  114. 72e.
    M. v. Rohr, “Arbeitgemeinschaft, I” (1936–1938)Google Scholar
  115. 72d.
    M. v. Rohr, “Arbeitgemeinschaft, II” (1936–1938)Google Scholar
  116. 72e.
    M. v. Rohr, “Ernst Abbe als Leiter der Werkstätte bis zu seinem Tode, III”, Forschungen zur Geschichte der Optik: Beilage der Zeitschrift für Instrumentenkunde 2 (1936–1938): 295–350;v. Rohr (1940)Google Scholar
  117. 72f.
    F. Schomerus, Geschichte des Jenarer Zeisswerkes, 1846–1946 (Stuttgart: Piscator, 1952);Google Scholar
  118. 72g.
    W. Schumann, et al., Carl Zeiss Jena Einst und Jetzt (Berlin: Rütten & Loening, 1962).Google Scholar
  119. 73.
    L. Dippel, “Mikrographische Mitteilungen”, Max Schultze’s Archiv für mikroskopische Anatomie 9 (1873): 801–12, on 811–12.CrossRefGoogle Scholar
  120. 74.
    See, for example, Carl Zeiss, “No. 23. Illustrierter Katalog über Mikroskope und Nebenapparate aus der optischen Werkstätte von Carl Zeiss in Jena”, 1878, BACZ 30528, which cites the correction of aberrations for all zones as the main advantage of his objectives. This language continued to appear after the introduction of homogenous immersion the following year, but with increasing attention given to aperture and resolving power. See also Boegehold (1951), 8–9.Google Scholar
  121. 75.
    Abbe to Dippel, 9 Oct 1873, BACZ 20386.Google Scholar
  122. 76.
    “Vier Handschriftlicher Notizbücher über Fertigung von Immersionssysteme”, 1873–1893, HStA Weimar, Carl Zeiss Jena, I/1/12323. These notebooks contain what appear to be logs from the mounting and correction of dry F and immersion systems. Because of their relatively short focal length, these objectives could be corrected for spherical aberration only for use with a cover slip of a specific thickness. Thicknesses for which the objectives are recorded as having their best correction range over approximately 25%; homogenous immersion objectives in later entries show a slightly varying numerical aperture. In addition, each objective was evaluated by the tester and given a rating of either “gut”, or “sehr gut.” The occasional gap in the record perhaps represents an objective that did not rate the “gut.” Obviously, some finished objectives were better than others. See also Wittig (1989), 77–78.Google Scholar
  123. 77.
    Abbe claimed that this variation was only due to frequent changes in the details of the designs. Abbe to Dippel, 21 Jan 1879, BACZ 20386.Google Scholar
  124. 78.
    The correspondence with Schwendener appears no longer to be extant, but is mentioned in Auerbach (1918), 281.Google Scholar
  125. 79.
    Abbe to Dippel, 25 Mar 1873, BACZ 20386.Google Scholar
  126. 80.
    Abbe, “Beiträge” (1873), 93–6; E. Abbe, “Ueber einen neuen Beleuchtungsapparat am Mikroskop”, Max Schultze’s Archiv für mikroskopische Anatomie 9 (1873): 469–80, in Gesammelte Abhandlungen, vol. I, 101–12.CrossRefGoogle Scholar
  127. 81.
    Abbe to Dippel, 9 Oct 1873, BACZ 20386.Google Scholar
  128. 82.
    See, for instance Dippel (1869), 291–2, where he describes a plate of diatoms arranged in increasing order of difficulty, commercially supplied by J.D. Möller for the purpose of testing the resolving power of microscopes.Google Scholar
  129. 83.
    In one review, Dippel had directly compared it to Zeiss’ F, for instance. See quote from Dippel, “Mikrographische Mitteilungen” (1873) above.Google Scholar
  130. 84.
    See Abbe, “Beiträge” (1873), 91, 99.Google Scholar
  131. 85.
    Pages 89–91 of Abbe’s Gesammelte Abhandlungen, vol. I.Google Scholar
  132. 86.
    Abbe to Dippel, 9 Oct 1873, BACZ 20386. Emphasis Abbe’s.Google Scholar
  133. 87.
    Abbe to Dippel, 23 Oct 1873, BACZ 20386.Google Scholar
  134. 88.
    Abbe to Dippel, 23 Oct 1873, BACZ 20386.Google Scholar
  135. 89.
    Abbe to Dippel, 23 Oct 1873, BACZ 20386.Google Scholar
  136. 90.
    L. Dippel, “Die neuen Objektivsysteme von Carl Zeiss und Professor Abbes Beleuctungsapparat”, Flora 56 (1873): 497–503.Google Scholar
  137. 91.
    L. Dippel (1873).Google Scholar
  138. 92.
    C. Nägeli and S. Schwendener, Das Mikroskop, Theorie und Anwendung desselben (Leipzig: Engelmann, 1877), iii.Google Scholar
  139. 93.
    Nägeli and Schwendener (1877), 84–6.Google Scholar
  140. 94.
    Nägeli and Schwendener (1877), 87.Google Scholar
  141. 95.
    Nägeli and Schwendener (1877), 147–9, 156–9.Google Scholar
  142. 96.
    E. Aberhalden to M. v. Rohr, 22 Mar 1939, BACZ 1012, 112.Google Scholar
  143. 97.
    v. Rohr, “Zur Geschichte” (1936–1938), 35.Google Scholar
  144. 98.
    Auerbach (1926), 14; Gesellschaft deutscher Naturforscher und Aerzte, “Sitzungen der XXXII. Abteilung (Instrumentenkunde)”, Verhandlungen der Gesellschaft deutscher Naturforscher und Aerzte 64:2 (1891): 567.Google Scholar
  145. 99.
    S. Czapski, “Die voraussichtlichen Grenzen der Leistungsfähigkeit des Mikroskops”, Zeitschrift für wissenschaftliche Mikroskopie 8 (1891): 145–55.Google Scholar
  146. 100a.
    E. Abbe, “Die Diffraction des unpolarisierten Lichtes und ihre Anwendung auf die Abbildung im Mikroskop”, 1893, HStA Weimar 11/43/22601 and BACZ 27190. Disappointed that Abbe never published this work, Otto Lummer and Fritz Reiche published a volume based on their notes from Abbe’s seminar more than twenty years later.Google Scholar
  147. 100b.
    See O. Lummer and F. Reiche, Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe (Braunschweig: F. Vieweg, 1910).Google Scholar
  148. 101a.
    S. Czapski Theorie der optischen Instrumente nach Abbe (Breslau: E. Trewendt, 1893)Google Scholar
  149. 101b.
    S. Czapski and O. Eppenstein, Grundzüge der Theorie der optischen Instrumente nach Abbe (Leipzig: J. A. Barth, 1904)Google Scholar
  150. 101c.
    S. Czapski, “Kollegheft: Geometriche Optik n. Prof. E. Abbe, I”, 1885, BACZ 11263.Google Scholar
  151. 102.
    “Protokoll vom 4. August 1903, Sitzung der Geschäftsleitung”, BACZ 23013; “Protokoll vom 8. August 1903, Sitzung der Geschäftsleitung”, BACZ 23013; “Protokoll vom 11. September 1903, Sitzung der Geschäftsleitung”, BACZ 23013; Ambronn to Vollert, 30 Aug 1903, BACZ 23013; E. Crawford, J.L. Heilbron and R. Ullrich, The Nobel population, 1901–1937: A census of the nominators and nominees for the prises in physics and chemistry (Berkeley: Office for History of Science and Technology, 1987), 38–9. The first volume of Abbe’s Gesammelte Abhandlungen, containing his papers on the theory of the microscope (but excluding some of his English contributions,) appeared in 1904. Other volumes followed after Abbe’s death.Google Scholar
  152. 103.
    Rayleigh “On the theory of optical images, with special reference to the microscope”, Philosophical magazine (1896): 167–95.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Stuart M. Feffer
    • 1
  1. 1.Deloitte & Touche Consulting GroupTwo World Financial CenterNew YorkUSA

Personalised recommendations