Skip to main content

Forests and the Global Biogeochemical Cycle of Mercury: The Importance of Understanding Air/Vegetation Exchange Processes

  • Chapter
Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances

Part of the book series: NATO ASI Series ((ASEN2,volume 21))

Abstract

Atmospheric sources are recognized to be significant in the cycling of Hg in the biosphere, yet there are few reliable data on air/surface exchange rates of Hg in forests. We have developed a tower-based micrometeorological method for measuring gas-phase Hg fluxes over environmental surfaces, and have used this approach to measure Hg° fluxes over soils, vegetation, and water surfaces. These fluxes have been combined with modeling results based on measurements of atmospheric Hg concentrations and speciation to quantify the overall flux of Hg between the atmosphere and the ground. These results are compared with a study of the biogeochemical cycle of Hg in the temperate deciduous forest at Walker Branch Watershed in the southeastern United States. Our preliminary results suggest that the largest Hg fluxes in forests involve gas exchange at the air/vegetation interface. Given the magnitude of these fluxes and their level of uncertainty, this forest could act as a net source or sink for atmospheric Hg, indicating the importance of better understanding the role of Hg exchange at the vegetation surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindqvist, O., Johansson, K., Aastrup, M., Anderson, A., Bringmark, L., Hovsenius, G., Hakanson, L., Iverfeldt, A., Meili, M. and Tim, B. (1991) Mercury in the Swedish Environment — Recent Research on Causes, Consequences and Corrective Methods, Water Air Soil Pollut. 55, 1–261.

    Article  Google Scholar 

  2. Nriagu, J. O. and Pacyna, J. M. (1988) Quantitative assessment of worldwide contamination of air, water and soil by trace metals, Nature 333, 134–139.

    Article  PubMed  CAS  Google Scholar 

  3. Slemr, F. and Langer, E. (1992) Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean, Nature 355, 434–437.

    Article  CAS  Google Scholar 

  4. Fitzgerald, W. F., Mason, R. P., Vandal, G. M. and Dulac, F. (1994) Air-Water Cycling of Mercury in Lakes, in J. Huckabee and C. Watras, (eds.), Mercury as A Global Pollutant, Lewis Publ., Boca Raton, FL, 203–220.

    Google Scholar 

  5. Mason, R. P., Fitzgerald, W. F., and Morel, F. M. M. (1994) The biogeochemical cycling of elemental mercury: Anthropogenic influences, Geochemica, 58, 3191–3198.

    CAS  Google Scholar 

  6. Kim, K.-H., Lindberg, S. E., and Meyers, T. P. (1995) Micrometeorological measurements of mercury fluxes over background forest soils in eastern Tennessee, Atmos. Envir. 27, 267–282.

    Google Scholar 

  7. Xiao, Z. F., Stromberg, D., and Lindqvist, O. (1995) Influence of Humic Substances on Photolysis of Divalent Mercury in Aqueous Solution, Water, Air, and Soil Pollut. 80, 789–798.

    Article  CAS  Google Scholar 

  8. Amyot, M., Mierle, G., Lean, D.R.S., and McQueen, D.J. (1994) Sunlight-induced formation of dissolved gaseous mercury in lake waters, Environmental Science & Technology, 28, 2366–2371.

    Article  CAS  Google Scholar 

  9. Kim, J. P. and Fitzgerald, W. F. (1986) Sea-air partitioning of mercury in the equatorial Pacific Ocean, Science 231, 1131–1133.

    Article  PubMed  CAS  Google Scholar 

  10. Gill, G. A. and Fitzgerald, W. F. (1987) Mercury in surface waters of the open ocean, Global Biogeochem. Cycles 1, 199–212.

    Article  CAS  Google Scholar 

  11. Fitzgerald, W. F. (1989) Atmospheric and oceanic cycling of mercury, in Chemical Oceanography 10, Academic Press, London, 151–186.

    Google Scholar 

  12. Schroeder, W. H., Munthe, J. and Lindqvist, O. (1989) Cycling of mercury between water, air, and soil compartments of the environment, Water Air Soil Pollut. 48, 337–347.

    Article  CAS  Google Scholar 

  13. Huebert, B. J. and Robert, C. H. (1985) The dry deposition of nitric acid to grass, J. Geophys. Res. 90, 2085–2090.

    Article  CAS  Google Scholar 

  14. Lindberg, S.E., Kim, K-H., Meyers, T. P., and Owens, J. G. (1995) A micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: Tests over contaminated soils, Envir. Sci. Technol. 29, 126–135.

    Article  CAS  Google Scholar 

  15. Lindberg, S. E., Meyers, T. P., and Munthe, J. (1996) Evasion of mercury vapor from the surface of a recently limed acid forest lake in Sweden, Water, Air, Soil, Pollut. (in press).

    Google Scholar 

  16. Kim, K.-H and Lindberg, S. E. (1995) Design and initial tests of a dynamic enclosure chamber for measurements of vapor-phase mercury fluxes over soils, Water, Air, Soil, Pollut. 80, 1059–1068.

    Article  CAS  Google Scholar 

  17. Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., and Kim, K.-H. (1995) Foliar exchange of mercury vapor: evidence for a compensation point, Water, Air, Soil, Pollut. 80, 373–382.

    Article  CAS  Google Scholar 

  18. Johnson, D. W. and Van Hook, R. I. (eds.) (1989) Biogeochemical Cycling in Walker Branch Watershed: A Synthesis of Research Results. Springer Verlag, Berlin.

    Google Scholar 

  19. Turner, R. R., Personal communication.

    Google Scholar 

  20. Meyers, T.P., Hall, M. E., and Lindberg, S. E. Use of the modified Bowen ratio technique to measure fluxes of trace gases, Atmos. Envir. (in press).

    Google Scholar 

  21. Kim, K.-H. and Lindberg, S. E. (1994) High-precision measurements of mercury vapor in air: Design of a six-port-manifold mass flow controller system and evaluation of mass flow errors at atmospheric pressure, J. Geophys. Res., 5379–5384.

    Google Scholar 

  22. Bloom, N. and Fitzgerald, W. F. (1988) Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection, Anal. Chim. Acta 208, 151.

    Article  CAS  Google Scholar 

  23. Lindberg, S. E., Kim, K.-H., and Munthe, J. (1995) The precise measurement of concentration gradients of mercury in air over soils: a review of past and recent measurements, Water, Air, Soil, Pollut. 80, 383–392.

    Article  CAS  Google Scholar 

  24. Bloom, N.S., Horvat, M., and Watras, C. J. (1995) Results of the international aqueous mercury speciation intercomparison exercise, Water, Air, Soil Pollut. 80, 1257–1268.

    Article  CAS  Google Scholar 

  25. Meyers, T. P., and Baldocchi, D. D. (1993) Trace gas exchange above the floor of a deciduous forest, 2. SO2 and O3 deposition, J. Geophys. Res. 7, 7.

    Google Scholar 

  26. Lindberg, S. E., Lovett, G. M., Richter, D. R., and Johnson, D. W. (1986) Atmospheric deposition and canopy interaction of major ions in a forest, Science 231, 141–145.

    Article  PubMed  CAS  Google Scholar 

  27. Johnson, D. W. and Lindberg, S. E. (1995) The biogeochemical cycling of Hg in forests: alternative methods for quantifying total deposition and soil emission, Water, Air, Soil, Pollut. 80, 1069–1077.

    Article  CAS  Google Scholar 

  28. Lindberg, S. E., Owens, J. G., and Stratton, W. (1994) Application of throughfall methods to estimate dry deposition of mercury, in J. Huckabee and C. Watras, (eds.), Mercury as A Global Pollutant, Lewis Publ., pp. 261–272.

    Google Scholar 

  29. Vermette, S. J., Lindberg, S. E., and Bloom, N. (1995) Field tests for a regional mercury deposition network: Sampling design and test results, Atmos. Envir. 29, 1247–1252.

    Article  CAS  Google Scholar 

  30. Stratton, W. J. and Lindberg, S. E. (1995) Use of a refluxing mist chamber for measurement of gas-phase mercury (II) species in the atmosphere, Water, Air, Soil, Pollut. 80, 1269–1278.

    Article  CAS  Google Scholar 

  31. Keeler, G. J., Hoyer, M. E., and Lamborg, C. H. (1994) Measurements of atmospheric mercury in the Great Lakes Basin, in C. J. Watras and J. W. Huckabee (eds.), Mercury Pollution: Integration and Synthesis, Lewis Publishers, pp. 231–241.

    Google Scholar 

  32. Lindqvist, O., Johansson, K., Aastrup, M, Anderson, A., Bringmark, L., Hovsenius, G., Hakanson, L., Iverfeldt, A., Meili, M. and Tim, B. (1991) Mercury in the Swedish Environment — Recent Research on Causes, Consequences and Corrective Methods, Water Air Soil Pollut. 55, 1–261.

    Article  Google Scholar 

  33. Munthe, J., Hultberg, H., and Iverfeldt, A. (1995) Mechanisms of deposition of methylmercury and mercury to coniferous forests, Water Air Soil Pollut. 80, 363–371.

    Article  CAS  Google Scholar 

  34. Nilsson, A., Andersson, T., Hakanson, L., and Anderson, A. (1989) Mercury in lake fish-linkages to mercury and selenium in mor and historical emissions (In Swedish. Summary in English). — SNV PM 3593, Swedish Environmental Protection Agency, S-171 85 Solna, Sweden, 1–117.

    Google Scholar 

  35. DOE (1993) Final report on the background soil characterization project at the Oak Ridge reservation, Oak Ridge, Tennessee, prepared by Environmental Sciences Division at the Oak Ridge National Laboratory. DOE/OR/01–1175/V3, Oak Ridge, Tenn.

    Google Scholar 

  36. Hoyer, M., Burke, J., and Keeler, G. (1995) Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation, Water Air Soil Pollut. 80, 199–208.

    Article  CAS  Google Scholar 

  37. Burke, J., Hoyer, M., Keeler, G, and Scherbatskoy, T. (1995) Wet deposition of mercury and ambient mercury concentrations at a site in the Lake Champlain basin, Water Air Soil Pollut. 80, 353–362.

    Article  CAS  Google Scholar 

  38. Jensen, A and Iverfeldt, A. (1994) Atmospheric bulk deposition of mercury to the southern Baltic Sea area, in C. J. Watras and J. W. Huckabee (eds.), Mercury Pollution: Integration and Synthesis, Lewis Publishers, pp. 221–230.

    Google Scholar 

  39. Driscoll, C. T., Otton, J. K., and Iverfeldt, A. (1994) Trace metals speciation and cycling, in B. Moldan and J. Černý (eds.), Biogeochemistry of Small Catchments: A Tool for Environmental Research, John Wiley & Sons Ltd., pp. 299–322.

    Google Scholar 

  40. Godbold, D. L. and Hüttermann, A. (1988) Inhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings, Physiologia Planatarium 74,270–275.

    Article  CAS  Google Scholar 

  41. Lindberg, S. E., Meyers, T. P., Taylor, G. E., Turner, R. R., and Schroeder, W. H. (1992) Atmosphere/surface exchange of mercury in a forest: Results of modeling and gradient approaches, J. Geophys. Res. 97, 2519–2528.

    CAS  Google Scholar 

  42. Browne, C. L. and Fang, C. S. (1978) Uptake of mercury vapor by wheat. An assimilation model, Plant Physiology 61, 430–433.

    Article  PubMed  CAS  Google Scholar 

  43. Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M. J., and Lund, J. R. (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine, J. Environ. Qual. 8, 572–578.

    Article  CAS  Google Scholar 

  44. Du, S.-H. and Fang, C. S. (1982) Uptake of elemental mercury vapor by C3 and C4 species, Environmental and Experimental Botany 22, 437–443.

    Article  CAS  Google Scholar 

  45. Lindberg, S. E., Owens, J. G., and Carpi A. (1995). Unpublished data.

    Google Scholar 

  46. Lindberg, S.E., Meyers, T. P., Kim, K-H. A modified Bowen ratio study of air/surface exchange of mercury vapor over a forest. Atmos. Envir. (in prep.).

    Google Scholar 

  47. Baldocchi, D. D. (1995). Unpublished data.

    Google Scholar 

  48. Meyers, T. P. (1995). Unpublished data.

    Google Scholar 

  49. Iverfeldt, A., and Lindqvist, O. (1986) Atmospheric oxidation of elemental mercury by ozone in the aqueous phase, Atmos. Env. 20, 1567–1573.

    Article  CAS  Google Scholar 

  50. Kothny, E. L. (1973) The three-phase equilibrium of mercury in nature, Trace Elements in the Environment, ACS #123, 149 pp.

    Article  Google Scholar 

  51. Baldocchi, D. D. and Meyers, T. P. (1991) Trace gas exchange above the floor of a deciduous forest, 1. Evaporation and CO2 efflux. J. Geophys. Res. 69, 1331–1340.

    Google Scholar 

  52. Lindberg, S. E. (1995) The Biogeochemical Cycle of Mercury in Forests, Paper presented at the NATO ASI Workshop on Global and Regional Cycles of Mercury, Novosibersk, Siberia, July 8–15, 1995.

    Google Scholar 

  53. Verta, M., Rekolainen, S., and Kinnunen, K. (1986b) Causes of increased fish mercury levels in Finnish reservoirs. Publ. Water Research Inst. Nat. Board of Waters, Helsinki, Finland 65, 44–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lindberg, S.E. (1996). Forests and the Global Biogeochemical Cycle of Mercury: The Importance of Understanding Air/Vegetation Exchange Processes . In: Baeyens, W., Ebinghaus, R., Vasiliev, O. (eds) Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances. NATO ASI Series, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1780-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1780-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7295-3

  • Online ISBN: 978-94-009-1780-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics