Skip to main content

Abstract

In 1861, at about the time that Graham reported his first dialysis experiments using synthetic membranes [1], Maxwell created the ‘sorting demon’, “a being whose faculties are so sharpened that he can follow every molecule in its course and would be able to what is at present impossible to us” [2]. In other words, the demon is able to discriminate between molecules. Suppose that a vessel is divided into two parts A and B by a division in which there is a small hole and that Maxwell’s demon sits at the hole which he can open and close at will (see figure I - 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Graham, T., Phil. Trans. Roy. Soc., 151 (1861) 183.

    Article  Google Scholar 

  2. see e.g., Din, E, Thermodynamic functions of gases, Butterworth, 1962.

    Google Scholar 

  3. Judson King, C., Separation Processes, McGraw Hill, 1971.

    Google Scholar 

  4. Sherwood, T.K., Mass transfer between phases, Phi Lambda Upsilon Univ. Press, Pa, Pennsylvania State University, 1959.

    Google Scholar 

  5. Separation & Purification, Critical needs and opportunities, National Academy Press, Washington, 1987.

    Google Scholar 

  6. Mulder, M.H.V., The use of Membrane Processes in Environmental Problems. An Introduction., in Crespo, J.G. and Böddeker, K.W. (Eds.), Membrane Processes in Separation and Purification, NATO ASI Series, Vol. 272, Kluwer Academic Publishers, 1994, p. 229.

    Google Scholar 

  7. Mulder, M.H.V., Energy Requirements in Membrane Separation Processes, in Crespo, J.G. and Böddeker, K.W. (Eds.), Membrane Processes in Separation and Purification, NATO ASI Series, Vol. 272, Kluwer Academic Publishers, 1994, p. 445.

    Google Scholar 

  8. Nollet, A., Leçons de physique-experimentale, Hippolyte-Louis Guerin, Paris, 1748.

    Google Scholar 

  9. Reuss, Mem. de la Soc. imper, de naturalistes de Moscou, 2 (1803) 327.

    Google Scholar 

  10. Porret, T., Ann. Phil., 8 (1816) 74.

    Google Scholar 

  11. Fick, A., Pogg. Ann., 94 (1855) 59.

    Article  Google Scholar 

  12. van ’t Hoff, J.H., Z Phys. Chem., 1 (1887) 481.

    Google Scholar 

  13. Nernst, W., Z. Phys. Chem., 4 (1889) 129.

    Google Scholar 

  14. Planck, M., Ann. Phys. u. Chem., 39 (1890) 161.

    Article  Google Scholar 

  15. Einstein, A., Ann. Phys., 17 (1905) 549.

    Article  CAS  Google Scholar 

  16. Donnan, EG., Z.Elektrochem. 17 (1911) 572.

    CAS  Google Scholar 

  17. Henderson, P., Z Phys. Chem., 59 (1907) 118.

    CAS  Google Scholar 

  18. Sollner, K., Z. Elektrochem., 36 (1930) 234.

    CAS  Google Scholar 

  19. Kedem, O., and Katchalsky, A., J. Gen. Physiol, 45 (1961) 143.

    Article  CAS  Google Scholar 

  20. Teorell, T., Trans. Far. Soc, 33 (1937) 1035, 1086.

    Google Scholar 

  21. Meyer, K.H., and Sievers, J.E, Helv. Chim. Acta., 19 (1936) 665.

    Article  CAS  Google Scholar 

  22. Lonsdale, H.K., Merten, U., Riley, R.L., J. Appl. Polym. Sci., 9 (1965) 1341.

    Article  CAS  Google Scholar 

  23. Schmid, G., Z Elektrochem., 54 (1950) 424.

    CAS  Google Scholar 

  24. Meares, P., J. Polym. Sci, 20 (1956) 507.

    Article  CAS  Google Scholar 

  25. Special Issue of the Journal of Membrane Science, Volume 100, 1995

    Google Scholar 

  26. Zsigmondy, R., and Bachmann, W., Z. Anorg. Chem., 103 (1918) 119.

    Article  CAS  Google Scholar 

  27. Ferry, J.D., Chem. Rev., 18 (1936) 373.

    Article  CAS  Google Scholar 

  28. Kolff, W.J., Berk, H.T.,ter Welle, M., van der Leg, J.W., van Dijk, E.C., and van Noordwijk, J., Acta. Med. Scand., 117 (1944) 121.

    Article  Google Scholar 

  29. Loeb, S., and Sourirajan, S., Adv. Chem. Ser., 38 (1962) 117.

    Article  Google Scholar 

  30. Henis, J.M.S., and Tripodi, M.K., J. Membr. Sci., 8 (1981) 233.

    Article  CAS  Google Scholar 

  31. Schneider K., and v. Gassel, T.J., Chem. Ing. Tech., 56 (1984) 514.

    Article  CAS  Google Scholar 

  32. Binning, R.C., Lee, R.J., Jennings, J.E, and Martin, E.C., Ind. Eng. Chem., 53 (1961) 45.

    Article  Google Scholar 

  33. Brüschke, H.E.A., Schneider, W.H., and Tusel, G.E, Lecture presented at the European Workshop on Pervaporation, Nancy, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mulder, M. (1996). Introduction. In: Basic Principles of Membrane Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1766-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1766-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4248-9

  • Online ISBN: 978-94-009-1766-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics