Skip to main content

Transport Through a Single-Band Wire Connected to Measuring Leads

  • Chapter
Quantum Transport in Semiconductor Submicron Structures

Part of the book series: NATO ASI Series ((NSSE,volume 326))

Abstract

Quantum wires, obtained by lateral confinement of a two dimensional electron gas [1], provide a good candidate to test the well-developed theory of one-dimensional interacting systems which show the so-called Luttinger liquid behavior [2, 3]. According to [4, 5] the interactions should renormalize the conductance g of a pure wire: g = 2g 0 K where g 0 = e 2/h is the conductance quantum and K is a key parameter depending on interactions, with K = 1 for a non-interacting system. The reduction of the conductance in the presence of localized or extended disorder has a power-law dependence on temperature [6, 7, 8], or on the wire length [9], determined also by K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).

    Article  ADS  Google Scholar 

  2. F. D. M. Haldane, J. Phys. C 14, 2585 (1981).

    Article  ADS  Google Scholar 

  3. H. J. Schulz, Thoa in Proceedings of Les Houches Summer School LXI, edited by E. Akkermans, G. Montambaux, J. Pichard, and J. Zinn-Justin (Elsevier, Amsterdam, 1995).

    Google Scholar 

  4. W. Apel, J. Phys. C 16, L271 (1982).

    Article  Google Scholar 

  5. C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 1220 (1992).

    Article  Google Scholar 

  6. A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).

    Article  ADS  Google Scholar 

  7. W. Apel and T. M. Rice, Phys. Rev. B 26, 7063 (1982).

    Article  ADS  Google Scholar 

  8. T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325 (1988).

    Article  ADS  Google Scholar 

  9. M. Ogata and H. Fukuyama, Phys. Rev. Lett. 73, 468 (1994).

    Article  ADS  Google Scholar 

  10. S. Tarucha, T. Honda, and T. Saku, Sol. State Comm. 94, 413 (1995).

    Article  ADS  Google Scholar 

  11. R. Landauer, Phil. Mag. 21, 863 (1970).

    Article  ADS  Google Scholar 

  12. M. Büttiker, IBM J. Res. Develop. 32, 317 (1988).

    Article  Google Scholar 

  13. Y. Imry Thoa in Directions in Condensed matter Physics, edited by G. Grinstein and G. Mazenko (World Scientific, Singapore, 1986).

    Google Scholar 

  14. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  ADS  Google Scholar 

  15. M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993).

    Article  ADS  Google Scholar 

  16. D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. D. Stone, Thoa in Proceedings of Les Houches Summer School LXI, edited by E. Akkermans, G. Montambaux, J. Pichard, and J. Zinn-Justin (Elsevier, Amsterdam, 1995).

    Google Scholar 

  18. M. Büttiker, Phys. Rev. B 33, 3020 (1986).

    Article  ADS  Google Scholar 

  19. M. Fabrizio and A. Gogolin, Phys. Rev. B 51, 17827 (1995).

    Article  ADS  Google Scholar 

  20. I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040 (1995).

    Article  ADS  Google Scholar 

  21. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

    Google Scholar 

  22. U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B 50, 6317 (1994).

    Article  ADS  Google Scholar 

  23. W. Götze and P. Wölfle, Phys. Rev. B 6, 1226 (1972).

    Article  ADS  Google Scholar 

  24. D. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995).

    Article  ADS  Google Scholar 

  25. V. V. Ponomarenko, Phys. Rev. B 52, R8666 (1995).

    Article  ADS  Google Scholar 

  26. D. Maslov, Phys. Rev. B 52, R14368 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Safi, I., Schulz, H.J. (1996). Transport Through a Single-Band Wire Connected to Measuring Leads. In: Kramer, B. (eds) Quantum Transport in Semiconductor Submicron Structures. NATO ASI Series, vol 326. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1760-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1760-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7287-8

  • Online ISBN: 978-94-009-1760-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics