Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 326))

Abstract

Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Kastner, Physics Today Jan. 1993 46, 24 (1993).

    Article  ADS  Google Scholar 

  2. T. Chakraborty, Comments on Condensed Matter Physics B16, 35 (1992).

    Google Scholar 

  3. M.A. Kastner, to be published in Comments on Condensed Matter Physics.

    Google Scholar 

  4. T.A. Fulton, and G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987);

    Article  ADS  Google Scholar 

  5. D.V. Averin and K.K. Likharev, Mesoscopic Phenomena in Solids, ed. by B.L. Al’tshuler, P.A. Lee and R.A. Webb (North-Holland, Amsterdam) 173 (1991). This is a comprehensive review of single electron tunneling in metals.

    Google Scholar 

  6. B. Su, V.J. Goldman, and J.E. Cunningham, Science 255, 313 (1992);

    Article  ADS  Google Scholar 

  7. M. A. Reed, J. N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).

    Article  ADS  Google Scholar 

  8. R.C. Ashoori,, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 68, 3088 (1992).

    Article  ADS  Google Scholar 

  9. U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 63, 1893 (1990);

    Google Scholar 

  10. E. B. Foxman, U. Meirav, P.L. McEuen, M.A. Kastner, O. Klein, P.A. Belk, D.M. Abusch, and S.J. Wind, Phys. Rev. B. 50, 14193 (1994).

    Article  ADS  Google Scholar 

  11. A. Kumar, Surface Science 263, 335 (1992).

    Article  ADS  Google Scholar 

  12. Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwdate, Y. Nakajima, S. Horiguchi, K. Murase, and M. Tabe, Electronics Letters 31, 136 (1995).

    Article  Google Scholar 

  13. P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen, and S.J. Wind, Phys. Rev. Lett. 66, 1926 (1991).

    Article  ADS  Google Scholar 

  14. U. Merkt, Physica B 189, 165 (1993).

    Article  ADS  Google Scholar 

  15. V. Fock, Z. Phys. 47, 446 (1928); other references may be found in Refs. [10, 11].

    Article  ADS  Google Scholar 

  16. O. Klein, C. de C. Chamon, D. Tang, D.M. Abusch-Magder, X.-G. Wen, M.A. Kastner and S.J. Wind, Phys. Rev. Lett. 74, 785 (1995).

    Article  ADS  Google Scholar 

  17. C. Hermann and C. Weisbuch, Phys. Rev. B 15, 823 (1977) for bulk GaAs;

    Article  ADS  Google Scholar 

  18. M. Dobers, K. v. Klitzing, and G. Weimann, Phys. Rev. B 38, 5453 (1988) for two-dimensional electron gas in a GaAs/AlGaAs heterostructure, where g depends weakly on LL filling.

    Article  ADS  Google Scholar 

  19. P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, and M.A. Kastner, N.S. Wingreen, and S.J. Wind, Phys. Rev. B 45, 11419 (1992);

    Article  ADS  Google Scholar 

  20. P.L. McEuen, N.S. Wingreen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, Y. Meir, and S.J. Wind, Physica B 189, 70 (1993).

    Article  ADS  Google Scholar 

  21. D. B. Chklovskii, BI. Shklovskii, and L. I. Glazman, Phys. Rev. B 46, 4026 (1992).

    Article  ADS  Google Scholar 

  22. G. Thurner, H. Herold, H. Ruder, G. Schlicht, and G. Wunner, Phys. Lett. 89A, 133 (1982).

    ADS  Google Scholar 

  23. R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 71, 613 (1993).

    Article  ADS  Google Scholar 

  24. A.H. MacDonald, S.R. Eric Yang, and M.D. Johnson, Aust. J. Phys. 46, 345 (1993);

    ADS  Google Scholar 

  25. C. de C. Chamon and X.-G. Wen, Phys. Rev. B 49, 8227 (1994).

    Article  ADS  Google Scholar 

  26. O. Klein, D. Goldhaber-Gordon, C. de C. Chamon, and M.A. Kastner, LANL preprint archives cond-mat/9511133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Klein, O., Chamon, C.D.C., Goldhaber-Gordon, D., Kastner, M.A., Wen, XG. (1996). Phase Transitions in Artificial Atoms. In: Kramer, B. (eds) Quantum Transport in Semiconductor Submicron Structures. NATO ASI Series, vol 326. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1760-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1760-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7287-8

  • Online ISBN: 978-94-009-1760-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics