Skip to main content

Morphological Effects at the Local Scale in two-Phase Materials

Some experimental evidences and tentative modeling

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 46))

Abstract

The mechanical behaviour of heterogeneous materials depends not only on the volume fraction of the constitutive phases, but also on their spatial distribution. Most models for the description of such materials are valid for specific configurations only. In this work, experimental results obtained with iron/silver and iron/copper blends, which exhibit several morphologies for a same phase content, are compared to predictions of the classical self-consistent scheme (SCS) [1, 2, 3], pertinent for materials with “perfectly disordered” [4] phase distributions, and of the generalized self-consistent scheme (GSCS) [5], designed for materials with a clear “matrix/inclusion” (MI) morphology, extended to nonlinear behaviour. At the macroscopic scale (the uniaxial elastoplastic tensile curve), no particular morphological effects are detected, but at the local scale (strain averages over each phase), different responses can be described according to the models and are indeed detected experimentally, but with wide quantitative discrepancies between models and experiments. The possible sources of the discrepancies are discussed. Some extensions to the models are suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill, R.: A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids 13 (1965), 213–222.

    Article  ADS  Google Scholar 

  2. Hershey, A.V.: The elasticity of an isotropic aggregate of anisotropic cubic crystals, Journal of Applied Mechanics 21 (1954), 236–240.

    MATH  Google Scholar 

  3. Kröner, E.: Berechnung der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Physics 151 (1958), 504.

    Article  Google Scholar 

  4. Kröner, E., and Koch, H.: Effective properties of disordered materials, SM Archives 1(2/3) (1976), 183–238.

    MATH  Google Scholar 

  5. Christensen, R.M., and Lo, K.H.: Solution for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids 27 (1979), 315–330.

    Article  ADS  MATH  Google Scholar 

  6. Berveiller, M., and Zaoui, A.: An extension of the self-consistent scheme to plastically-flowing poly crystals, Journal of the Mechanics and Physics of Solids 26 (1979), 325–344.

    Article  Google Scholar 

  7. Tandon, G.P., and Weng, G.J.: A theory of particle-reinforced plasticity, Journal of Applied Mechanics 55(1) (1988), 126–135.

    Article  ADS  Google Scholar 

  8. Hervé, E., and Zaoui, A.: Modelling the effective behaviour of non-linear matrix inclusion composites, European Journal of Mechanics A/Solids 9(6) (1990), 505–515.

    MATH  Google Scholar 

  9. Bornert, M., Hervé, E., Stolz, C., and Zaoui, A.: Self-consistent approaches and strain heterogeneities in two-phase elastoplastic materials, Applied Mechanics Reviews 47(1) (1994), 66–76.

    Article  ADS  Google Scholar 

  10. Buryachenko, V.A.: Effective strength properties of elastic physically nonlinear composites. In Mecamat 93, International Seminar on Micromechanics of Materials, Eyrolles, (1993), pp. 567–578.

    Google Scholar 

  11. Suquet, P.: Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure, Compte-rendus à l’Académie des Sciences 320 (1995), 563–571.

    MATH  Google Scholar 

  12. Kreher, W.: Residual stresses and stored elastic energy of composites and poly crystals, Journal of the Mechanics and Physics of Solids 38(1) (1990), 115–128.

    Article  ADS  MATH  Google Scholar 

  13. Ponte Castañeda, P.: The effective mechanical properties of nonlinear isotropic composites. Journal of the Mechanics and Physics of Solids 39(1) (1991), 45–71.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Allais, L.: Effet de la morphologie et de la répartition spatiale des phases sur le comportement mécanique des matériaux biphasés,. PhD thesis, Université Paris XIII, (1991).

    Google Scholar 

  15. Allais, L., Bornert, M., Bretheau, T., and Caldemaison, D.: Experimental characterization of the local strain field in a heterogeneous clastoplastic material, Acta Metallurgica et Materialia 42(11) (1994), 3865–3880.

    Article  Google Scholar 

  16. Stolz, C., and Zaoui, A.: Analyse morphologique et approches variationnelles du comportement d’un milieu élastique hétérogène, Compte-rendus à l’Académie des Sciences 312 (1991), 143–150.

    MATH  Google Scholar 

  17. Hervé, E., Stolz, C., and Zaoui, A.: A propos de l’assemblage des sphères composites de Hashin, Compte-rendus à l’Académie des Sciences 313 (1991), 857–862.

    MATH  Google Scholar 

  18. Bornert, M., Stolz, C., and Zaoui, A.: Morphologically representative pattern-based bounding in elasticity, to appear in Journal of the Mechanics and Physics of Solids (1995).

    Google Scholar 

  19. Hashin, Z.: The elastic moduli of heterogeneous materials, Journal of Applied Mechanics 29 (1962), 143–150.

    MathSciNet  MATH  Google Scholar 

  20. Bornert, M.: A generalized pattern-based self-consistent scheme, to appear in Computational Materials Science (1995).

    Google Scholar 

  21. Hervé, E., and Zaoui, A.: N-layered inclusion-based micromechanical modelling, International Journal for Engineering Sciences 31(1) (1993), 1–10.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Bornert, M. (1996). Morphological Effects at the Local Scale in two-Phase Materials. In: Pineau, A., Zaoui, A. (eds) IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials. Solid Mechanics and its Applications, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1756-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1756-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7285-4

  • Online ISBN: 978-94-009-1756-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics