Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 46))

  • 350 Accesses

Abstract

Zirconium, a material principally used in the nuclear industry, is characterized by the existence of two allotropic varieties, the ß phase and the α phase which are b.c.c and h.c.p crystals respectively. The former is found above 1138K and the later below the same critical temperature. The microstructure arises from a bainitic transformation of the ß phase into the α phase. It consists in colonies composed of parallel laths with the same crystallographic orientation; the “lath boundaries” are the planes where the precipitates of betagenic elements (Fe, Cr, Ni) lie. The principal deformation mechanism under uniaxial tension is prismatic slip: three prismatic slip systems <112̄0> (101̄0) can be activated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spurrier, J. and Scully, J.C. (1972) Fratographic aspects of the stress corrosion cracking of Titanium in a methanol/HCl mixture, Corrosion-NACE 28, 12, 453–463.

    Google Scholar 

  2. Atchinson, I. and Cox, B. (1972) Interpretation of fractographs of SCC in hexagonal metals, technical note, Corrosion-NACE 28, 3, 83–87.

    Google Scholar 

  3. McClintock, F.A.,(1968) J. Appl. Mech. ASME 35, 363.

    Google Scholar 

  4. Timoschenko, S. (1961) Théorie de l’Élasticité, Ch. Béranger, Paris, Liège, pp. 80–81.

    Google Scholar 

  5. Neuman, P. (1974) The geometry of slip processes at a propagating fatigue crack-II, Acta. Met., 22, 117–1178.

    Google Scholar 

  6. Pelloux, R.M. (1969) Proc. Air Force Conf. on fatigue and fracture of aircraft. Structures and Materials, Miami Beach, p 409.

    Google Scholar 

  7. Lemoine, P., Forgeron, T., Le Naour, F., Marini, B. and Mottot, M. (1990) Propriétés mécaniques générales: spécificités du zirconium grade 702, Journées d’études sur le zirconium, pp 75–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Crepin, J., Bretheau, T. (1996). Crystallographic Growth of Cavities in Zirconium. In: Pineau, A., Zaoui, A. (eds) IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials. Solid Mechanics and its Applications, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1756-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1756-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7285-4

  • Online ISBN: 978-94-009-1756-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics