Skip to main content

Self-Consistent Modelling of Elastic-Viscoplastic Multiphase Materials

  • Conference paper

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 46))

Abstract

This paper is devoted to a self-consistent derivation of the overall behaviour of multiphase materials from those of the constituent phases when these phases obey rate-dependent elastic-plastic constitutive equations. We have already proposed a solution to this still unsolved problem in the case of quite simple constitutive equations. In this paper, the formulation is extended to more general ones, including internal parameters: such a description can be specified for the case of rate-dependent elastic-plastic polycrystals and the classically associated constitutive equations. It is shown that the merits of the proposed formulation are saved at the expense of limited complication. A simple application is given as an illustration of the tractability of the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kröner, E. (1961) Zur plastischen Verformung des Vielkristalls, Acta Metall, 9, 155–161.

    Article  Google Scholar 

  2. Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London, A 241, 376–396.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Hill, R. (1965) Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89–101.

    Article  ADS  MATH  Google Scholar 

  4. Hutchinson, J.W. (1976) Bounds and self-consistent estimates for creep of poly crystalline materials, Proc. Roy. Soc. London, A 348, 101–127.

    Article  ADS  MATH  Google Scholar 

  5. Laws, N. and McLaughlin, R (1978) Self-consistent estimates for the viscoelastic creep compliances of composite materials, Proc. R. Soc. Lond., A 359, 251–273.

    Article  MathSciNet  ADS  Google Scholar 

  6. Zaoui, A. (1972) Effets de la désorientation des grains sur le comportement viscoplastique des polycristaux C.F.C., Int. J. Solids Structures, 8, 1089–1101.

    Article  Google Scholar 

  7. Weng, G J. (1981) Self-consistent determination of time-dependent behaviour of metals, J. Appl. Mech., 48, 41–46.

    Article  ADS  MATH  Google Scholar 

  8. Weng, G.J. (1982) A unified self-consistent theory for the plastic creep deformation of metals, J. Appl. Mech., 48, 41–46.

    Article  Google Scholar 

  9. Nemat-Nasser, S. and Obata, M. (1986) Rate-dependent finite elastoplastic deformation of polycrystals, Proc. Roy. Soc. London, A 407, 343–375.

    Article  ADS  Google Scholar 

  10. Harren, S.V. (1991) The finite deformation of rate-dependent polycrystals I, A self-consistent framework, J. Mech. Phys. Solids, 39, 345–360.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Rougier, Y., (1994) Ph. D. Dissertation, Ecole Polytechnique, Palaiseau (France).

    Google Scholar 

  12. Rougier, Y., Stolz C and Zaoui, A. (1994) Self-consistent modelling of elastic-viscoplastic polycrystals, C. R. Acad. Sci. Paris, II 318, 145–151.

    Google Scholar 

  13. Zaoui, A. and Raphanel, J.L. (1993) On the nature of the intergranular accommodation in the modelling of elastoviscoplastic behavior of polycrystalline aggregates, in C. Teodosiu, J.L. Raphanel and F. Sidoroff (eds), Large plastic deformations, Fundamentals and applications to metal forming, Balkema, Rotterdam, pp. 185–192.

    Google Scholar 

  14. Zaoui, A., Rougier, Y. and Stolz C., (1995) Micromechanical modelling based on morphological analysis; Application to viscoelasticity, in R. Pyrz (ed), Microstructure-Property Interactions in Composite Materials, Kluwer Academic Publishers, Dordrecht, 419–430.

    Google Scholar 

  15. Kröner, E. (1977) Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids, 25, 137–155.

    Article  ADS  MATH  Google Scholar 

  16. Kröner, E. (1978) Self-consistent scheme and graded disorder in polycrystal elasticity, J. Phys. F: Metal Phys., 8, 2261–2267.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Navidi, P., Rougier, Y., Zaoui, A. (1996). Self-Consistent Modelling of Elastic-Viscoplastic Multiphase Materials. In: Pineau, A., Zaoui, A. (eds) IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials. Solid Mechanics and its Applications, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1756-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1756-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7285-4

  • Online ISBN: 978-94-009-1756-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics