Skip to main content

Microcavity Emitters and Detectors

  • Chapter
Book cover Future Trends in Microelectronics

Part of the book series: NATO ASI Series ((NSSE,volume 323))

  • 179 Accesses

Abstract

Modern crystal growth methods allow multilayer heterostructures to be incorporated in a variety of novel and useful devices. For example, the use of distributed Bragg reflectors (DBR’s) with high reflectivity designed for a specific wavelength has led to microcavities for both light emitters and detectors. This has revolutionized the design of semiconductor lasers, which now have resonant cavities on the order of a single wavelength of light. Photodetectors also have been changed by incorporating DBR’s to form microcavities for absorption. The resonant-cavity photodiode structure in effect decouples the quantum efficiency from the transit-time. It is also possible to introduce additional periodicities in the mirror design to achieve reflectivity at two (or four) separate wavelengths. These wavelength-selective mirrors should have a variety of applications in wavelength division multiplexing. Lasers and detectors employing resonant cavities on the wavelength scale will play an important role in a variety of future optoelectronic applications, and for optical interconnects. By using techniques such as selective oxidation of AlAs layers, it is possible to define cavities in the lateral plane as well as vertically between the DBR’s. As a result of these advances in the design of microcavities, new approaches to low-dimensional confinement of photons are possible, in analogy to the study of electron confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Sze, S.M. (1990) High-Speed Semiconductor Devices, Wiley Interscience, New York.

    Google Scholar 

  2. Shih, Y.C. and Streetman, B.G. (1991) Modulation of carrier distributions in delta-doped quantum wells, Appl. Phys. Lett. 59, 1344–1346.

    Article  Google Scholar 

  3. Shih, Y.C., Sadra, K., and Streetman, B.G. (1994) Random-period superlattice quantum wells, J. Vac. Sci. Technol. B 12, 1082–1985.

    Article  Google Scholar 

  4. Lee, C.P., Tsai, C.M., and Tang, J.S. (1993) Dual-wavelength Bragg reflectors using GaAs/AlAs multilayers, Electron. Lett. 29, 1980–81.

    Article  Google Scholar 

  5. Anselm, K.A., Murtaza, S.S., Campbell, J.C., and Streetman, B.G. (1995) Four wavelength Bragg mirror using GaAs/AlAs, Optics Lett. 20, 178–179.

    Article  Google Scholar 

  6. Murtaza, S.S., et al. (1994) SiGe/Si resonant cavity photodetector, IEEE Dev. Research Conf., Boulder, CO.

    Google Scholar 

  7. Murtaza, S.S., et al. (1995) High-efficiency, dual-wavelength, wafer-fused resonant-cavity photodetector operating at long wavelengths, IEEE Photonics Technol. Lett. 7, 679–681.

    Article  Google Scholar 

  8. Mclntyre, R.J. (1966) Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Dev. 13, 164.

    Article  Google Scholar 

  9. Murtaza, S.S., Anselm, K.A., Hu, C., Nie, H., Streetman, B.G., and Campbell, J.C. (1995) Resonant cavity enhanced (RCE) separate absorption and multiplication (SAM) avalanche photodetector (APD), to appear in IEEE Photonics Technol. Lett.

    Google Scholar 

  10. Campbell, J.C., et al. (1989) J. Lightwave Tech. 7, 473.

    Article  Google Scholar 

  11. Chandramouli, V., and Maziar, C.M. (1993) Monte Carlo analysis of band structure influence on impact ionization in InP, Solid State Electron. 36, 285–290.

    Article  Google Scholar 

  12. Rogers, T.J., Lei, C., Deppe, D.G., and Streetman, B.G. (1993) Low threshold voltage cw vertical- cavity surface-emitting lasers, Appl. Phys. Lett. 62, 2027–2029.

    Article  Google Scholar 

  13. Dallessasse, J.M., et al. (1990) Hydrolization oxidation of AlGaAs-AlAs-GaAs quantum well heterostructures and superlattices, Appl. Phys. Lett. 57, 2844–2846.

    Article  Google Scholar 

  14. Huffaker, D.L., Deppe, D.G., Kumar, K., and Rogers, TJ. (1994) Native oxide defined ring contact for low threshold vertical-cavity lasers, Appl. Phys. Lett. 65, 97–99.

    Article  Google Scholar 

  15. Deppe, D.G., Huffaker, D.L., Lin, C.C., and Rogers, T.J. (1994) Nearly planar low threshold vertical-cavity surface-emitting lasers using high contrast mirrors and native oxide, Conference on Lasers and Electro-Optics 1994 Technical Digest Series 8, CPD2–1/3–6/8, May 8–13, Anaheim, CA.

    Google Scholar 

  16. Huffaker, D.L., Deppe, D.G., and Shin, J. (1995) Threshold characteristics of planar and index-guided microcavity lasers, Appl. Phys. Lett. 67, 4–6.

    Article  Google Scholar 

  17. Cutrer, D.M., and Lau, K.Y. (1995) Ultralow power optical interconnect with zero-biased, ultralow threshold laser — how low a threshold is low enough, IEEE Photonics Technol. Lett. 7, 4.

    Article  Google Scholar 

  18. Lear, K.L., Choquette, K.D., Schneider, R.P., Kilcoyne, S.P., and. Geib, K.M. (1995) Selectively oxidized vertical-cavity surface emitting laser with 50% power conversion efficiency, Electron. Lett. 31, 208.

    Article  Google Scholar 

  19. Hayashi, Y., et al. (1995) A record low threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure, Electron. Lett. 31, 560.

    Article  Google Scholar 

  20. Huffaker, D.L., Shin, J.L., Deng, H., Lin, C.C., Deppe, D.G., and Streetman, B.G. (1994) Improved mode stability in low threshold single quantum well native-oxide defined vertical-cavity lasers, Appl. Phys. Lett. 65, 2642–2644.

    Article  Google Scholar 

  21. Choquette, K.D., et al. (1995) Cavity characteristics of selectively oxidized vertical-cavity lasers, Quantum Optoelectronics 1995 Topical Digest 14, 191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Streetman, B.G., Campbell, J.C., Deppe, D.G. (1996). Microcavity Emitters and Detectors. In: Luryi, S., Xu, J., Zaslavsky, A. (eds) Future Trends in Microelectronics. NATO ASI Series, vol 323. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1746-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1746-0_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7280-9

  • Online ISBN: 978-94-009-1746-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics