Skip to main content

Simulating Electronic Transport in Semiconductor Nanostructures

  • Chapter
Future Trends in Microelectronics

Part of the book series: NATO ASI Series ((NSSE,volume 323))

  • 184 Accesses

Abstract

Simulation of semiconductor devices has reached some maturity for device structures that can be described by the system of device equations given by Shockley [1, 2]. High energy transport, including hot electron effects such as impact ionization and gate currents, can be correctly simulated by full band Monte Carlo approaches [3] (solving Boltzmann-type equations) and has also matured into the realm of engineering; the missing pieces being mainly standardization and numerical efficiency. Correspondingly, commercial packages, which solve the Shockley equation system (even in three dimensions) and feature full band Monte Carlo post processors, are available or are in the final stages of development. Complex full band Monte Carlo device codes are also available [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Streetman, B.G. (1980) Solid State Electronic Devices, Prentice-H all, Englewood Cliffs, NJ.

    Google Scholar 

  2. Hess, K. (1988) Advanced Theory of Semiconductor Devices, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  3. Bude, J. (1991) Scattering Mechanisms for Semiconductor Transport Calculations, Monte Carlo Device Simulation: Full Band and Beyond, ed. K. Hess, Kluwer Academic Publishers, Norwell, Mass.

    Google Scholar 

  4. Laux, S.E. and Fischetti, M.V. (1988) Numerical Aspects and Implementation of the DAMOCLES Monte Carlo Device Simulation Program, Monte Carlo Device Simulation: Full Band and Beyond, ed. K. Hess, Kluwer Academic Publishers, Norwell, Mass.

    Google Scholar 

  5. Ando, T., Fowler, A.B., and Stern, F. (1982) Electronic Properties of Two-Dimensional Systems, Review of Modern Physics, 54, 466.

    Google Scholar 

  6. Macucci, M., Hess, K., and Iafrate, G.J. (1995) Simulation of Electronic Properties and Capacitance of Quantum Dots, J. Appl. Phys., 77, 3267–3276.

    Article  Google Scholar 

  7. Car, R., and Parrinello, M. (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55, 2471–2474.

    Article  Google Scholar 

  8. Grupen, M., Ravaioli, U., Galick, A., Hess, K., and Kerkhoven, T., (1994) Coupling the Electronic and Optical Problems in Semiconductor Quantum Well Laser Simulations, Proc. SPIE OE/LASE Conf., 2146, Los Angeles, CA, 133–147.

    Google Scholar 

  9. Grupen, M., Kosinovsky, G., and Hess, K. (1993) The Effect of Carrier Capture on the Modulation Bandwidth of Quantum Well Lasers, 1993 International Electron Device Meeting Technical Digest, 23.6.1–23.6.4.

    Google Scholar 

  10. Grupen, M. and Hess, K. (1994) Self-Consistent Calculation of the Modulation Response for Quantum Well Laser Diodes, Appl. Phys. Lett. 65, 2454–2456.

    Article  Google Scholar 

  11. Nagarajan, R., Mirin, R.P., Reynolds, T.E., and Bowers, J.E. (1993) Experimental Evidence for Hole Transport Limited Intensity Modulation Response in Quantum Well Lasers, Electron. Lett. 29, 1688–1690.

    Article  Google Scholar 

  12. Shichijo, H., Kolbas, R. M., Holonyak, N., Dupuis, R. D., and Dapkus, P. D. (1978) Carrier Collection in a Semiconductor Quantum Well, Solid State Communications 27, 1029.

    Article  Google Scholar 

  13. Brum, J. A. and Bastard, G. (1986) Resonant Carrier Capture by Semiconductor Quantum Wells, Phys. Rev. B 33, 1420–1423.

    Article  Google Scholar 

  14. Sotirelis, P. and Hess, K. (1994) Electron Capture in GaAs Quantum Wells, Phys. Rev. B 49, 7543–7547.

    Article  Google Scholar 

  15. Preisel, M. (1994) Carrier Capture and Carrier Kinetics in Biased Quantum Well Devices, Tele Danmark Research, Hørsholm, Denmark.

    Google Scholar 

  16. Register, L.F. and Hess, K. (1994) Numerical Simulation of Electron Transport in Mesoscopic Structures with Weak Dissipation, Phys. Rev. B 49, 1900–1906.

    Article  Google Scholar 

  17. Hess, K., Register, L.F., and Macucci, M. (1994) Toward a Standard Model in Nanostructure Transport Problems Including Dissipation, Proceedings of the 2nd International Symposium on Quantum Confinement: Physics and Applications 94–17, 3–17.

    Google Scholar 

  18. Zory, P.S. (1993) Quantum Well Lasers, Academic Press, San Diego.

    Google Scholar 

  19. Pastore, G., Smargiassi, E., and Buda, F. (1991) Theory of Ab Initio Molecular-Dynamics Calculations, Phys. Rev. A 44, 6334–6347.

    Article  Google Scholar 

  20. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D. (1992) Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients, Rev. of Mod. Phys. 64, 1045–1097.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hess, K., Von Allmen, P., Grupen, M., Register, L.F. (1996). Simulating Electronic Transport in Semiconductor Nanostructures. In: Luryi, S., Xu, J., Zaslavsky, A. (eds) Future Trends in Microelectronics. NATO ASI Series, vol 323. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1746-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1746-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7280-9

  • Online ISBN: 978-94-009-1746-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics