Skip to main content

Nonlithographic Fabrication and Physics of Nanowire and Nanodot Array Devices — Present and Future

  • Chapter
Future Trends in Microelectronics

Part of the book series: NATO ASI Series ((NSSE,volume 323))

Abstract

It has been the “proven truth” for some decades that the performance of electronic devices should rise with decreasing dimensions. The continuos advance of lithographic technology in the past made possible serious exploration of the fascinating world of low-dimensional structures and was in turn propelled by the results of this exploration. Today, the submicron lithography in combination with different growth techniques such as MBE and MOCVD is routinely used for fabrication of quantum-well based devices with superior characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leon, R., Petroff, P.M., Leonard, D. and Fafard, S. (1995) Spatially resolved visible luminescence of self-assembled semiconductor quantum dots, Science 267,1966–1968.

    Article  Google Scholar 

  2. Ozin, G. A. (1992) Nanochemistry: synthesis in diminishing dimensions, Adv. Mat. 4, 612–648.

    Article  Google Scholar 

  3. Martin, C. R. (1994) Nanomaterials: a membrane based synthetic approach, Science 266, 1961–1966.

    Article  Google Scholar 

  4. Al-Mawlawi, D., Liu, C. Z. and Moskovits, M. (1994) Nanowires formed in anodic oxide nanotemplates, J. Mater. Res. 9, 1014–1018

    Article  Google Scholar 

  5. Al-Mawlawi, D., Douketis, C., Bigioni T. et al (1995) Electrochemical Fabrication of Metal and Semiconductor Nano-wire Arrays, Proc. 187 Meet. Electrochem. Soc., May 21–26, Reno, Nevada, Pennington, in print.

    Google Scholar 

  6. O’Sullivan, J.P. and Wood, G. C. (1970) The morphology and mechanism of formation of porous anodic films on aluminium, Proc. Roy. Soc. Lond. A. 317, 511–543.

    Article  Google Scholar 

  7. Switzer, J. A., Hung C. J., Breyfogl B. E. et al (1994) Electrodeposited defect chemistry superlattices, Science 264, 1573–1576.

    Article  Google Scholar 

  8. Ross, C. A. (1994) Electrodeposited multilayer thin films, Annu. Rev. Mater. Sci. 24, 159–188.

    Article  Google Scholar 

  9. Streltsov, E.N. Osipovitch, N.P. Routkevitch, D. L. and Sviridov, V.V. (1995) Electrochemical deposition of compositionally modulated bismuth chalkogenide films, in preparation.

    Google Scholar 

  10. Gregory, B. W. and Stickney, J. L. (1991) Electrochemical atomic layer epitaxy (ECALE), J. Electroanal. Chem. 300, 543–561.

    Article  Google Scholar 

  11. Kawai, S. and Ueda, R. (1975) Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co-Ni, J. Electrochem. Soc. 122,32–36

    Article  Google Scholar 

  12. Shiraki, M, Wakui, Y. and Tsuya, N. (1985) Perpendicular magnetic media by anodic oxidation method and their recording characteristics, IEEE Trans. Magn. 21, 1465–1467;

    Article  Google Scholar 

  13. Al-Mawlawi, D., Coombs, N. and Moskovits, M. (1991) Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size, J. Appl. Phys., 70 4421–4425

    Article  Google Scholar 

  14. Dunlop, D. J., Xu, S., Ozdemir, O., Al-Mawlawi, D. and Moskovits, M. (1993) Magnetic properties of oriented iron particles as a function of particle size, shape and spacing, Phys. Earth Planet. Inter., 76, 113.

    Article  Google Scholar 

  15. Haruma, M., Kobayashi, T., Sano, H. and Yamada, N. (1987) Chem. Soc. Jap. Chem. Lett., 407; Miller, D. and Moskovits, M. (1989) Separate pathways for the synthesis of oxygenates and hydrocarbons in Fisher-Tropsch reaction, J. Am. Chem. Soc., 111, 9250.

    Article  Google Scholar 

  16. Foulke, D. G. and Stoddard, W. B. (1963) in F. A. Lowenhiem (ed.) Modern Electroplating, Wiley, New York, 632

    Google Scholar 

  17. Preston, C. K. and Moskovits, M. (1988) New Technique for the determination of metal particle size in supported metal catalyst, J. Phys. Chem., 92, 2957–2960

    Article  Google Scholar 

  18. Preston, C. K. and Moskovits, M. (1993) Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles, J. Phys. Chem. 97, 8495–8503

    Article  Google Scholar 

  19. Saito, M., Kirihara, M., Taniguchi, T. and Miyagi, M. (1989) Micropolarizer made of the anodized alumina film, Appl. Phys. Lett., 55, 607.

    Article  Google Scholar 

  20. Pontifex, G. H., Zhang, P., Wang, Z., Haslett, T. L., Al-Mawlawi, D. and Moskovits, M. (1991) STM imaging of the surface of small metal particles formed in anodic oxide pores, J. Phys. Chem. 95, 9989–9993.

    Article  Google Scholar 

  21. Whitney, T. M., Jiang, J. S., Searson, P. C. and Chien, C.L. (1993) Fabrication and magnetic properties of arrays of metallic nanowires, Science 261, 1316;

    Article  Google Scholar 

  22. Nagodawithana, K., Searson, P.C., Liu, K. and Chien, C.L. (1995) Processing and properties of electrodeposited Cu-Co multilayered nanowires, Proc. 187 Meet. Electrochem. Soc., May 21–26, Reno, Nevada, Pennington, in print.

    Google Scholar 

  23. Baranski, A. S. and Fawcett, W. B. (1980) The electrodeposition of metal chalcogenides, J. Electrochem. Soc. 127, 766–767.

    Article  Google Scholar 

  24. Klein, J. D., Herrick, R. D., Palmer, II, D., Sailor, M. J., Brumlik, C. J. and Martin, C. R. (1993) Electrochemical fabrication of cadmium chalcogenide microdiode arrays, Chem. Mater., 5, 902–904.

    Article  Google Scholar 

  25. Brus, L. E. (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest exited electronic state, J. Chem. Phys. 80, 4403;

    Article  Google Scholar 

  26. Routkevitch, D., Ryan, L. and Moskovits, M. (1995) in preparation.

    Google Scholar 

  27. Shiang, J. J., Risbud, S.H. and Alivisatos, A.P. (1993) Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals, J. Chem. Phys. 98, 8432.

    Article  Google Scholar 

  28. Wang, Y. and Herron, N. (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, J. Phys. Chem. 95, 525–532

    Article  Google Scholar 

  29. Sweeny, M. and Xu, J.M. (1989) Hole energy levels in zero-dimensional quantum balls, Solid State Comm., 72, 301.

    Article  Google Scholar 

  30. Al-Mawlawi, D., Moskovits, M., Ellis, D., Williams A. and Xu, J.M. (1993) Working with Mother Nature: Nano-wire diode arrays made by novel techniques and functioning at 300K, Proc. of 1993 Int. Device Research Symposium, Virginia, USA, 311.

    Google Scholar 

  31. Haruyama, J., Moskovits, M., Routkevich, D., Tager, A.A. and Xu, J.M. (1995) Periodic conductance oscillations in novel nano-wire/semiconductor anti-dot arrays, Submitted to the IEDM’95 Conference.

    Google Scholar 

  32. Mullen, K., Ben-Jacob, E., Jaklevic, R.C. and Schuss, Z. (1988) I-V characteristics of coupled ultrasmall-capacitance normal tunnel junctions, Phys.Rev.B 37, 98–105.

    Article  Google Scholar 

  33. Mooij, J.E. and Schön, G. (1992) Single charges in 2-dimensional junction arrays, in H.Grabet and M.H.Devoret (eds.), Single Charge Tunnelling, Coulomb Blockade Phenomena in Nanostructures, NATO ASI Ser. B 294, Plenum Press, New York., pp.275–310.

    Google Scholar 

  34. Averin, D.V. and Likharev, K.K. (1991) in B. Altshuler, P. A Lee, and R. A. Webb (eds.), Mesoscopic Phenomena in Solids, Elsevier, Amsterdam, Chapt.6.

    Google Scholar 

  35. Misuki, I., Yamamoto, Y., Yoshino, T. and Baba, N. (1987) J. Met. Finish. Soc. Jap. 38, 561.

    Article  Google Scholar 

  36. Chou, S.Y., Wei, M.S., Krauss, P.R. and Fisher, P.B. (1994) Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in2 density for ultrahigh density quantum magnetic storage, J. Appl. Phys. 76, 6673–6675.

    Article  Google Scholar 

  37. Piraux, L., George, J.M., Despres, J.F., Leroy, C. et al (1994) Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett. 65, 2484–2486

    Article  Google Scholar 

  38. Blondel, A, Meier J.P., Doudin, B. and Ansermet, J.-Ph. (1994) Giant magnetoresistance of nanowires of multilayers, Appl. Phys. Lett. 65, 3019–3021.

    Article  Google Scholar 

  39. Masuda, H. and Fukuda, K. (1995) Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science 268, 1466–1468.

    Article  Google Scholar 

  40. Moskovits, M. and Xu, J. M. (1994) Nano-electric devices, USA Patent application.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tager, A.A. et al. (1996). Nonlithographic Fabrication and Physics of Nanowire and Nanodot Array Devices — Present and Future. In: Luryi, S., Xu, J., Zaslavsky, A. (eds) Future Trends in Microelectronics. NATO ASI Series, vol 323. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1746-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1746-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7280-9

  • Online ISBN: 978-94-009-1746-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics