Skip to main content

Challenges and Trends for the Application of Quantum-Based Devices

  • Chapter
Future Trends in Microelectronics

Part of the book series: NATO ASI Series ((NSSE,volume 323))

Abstract

As semiconductor technology continues to drive the scaling of electronic device dimensions into the ultrasubmicron, nanodimensional regime, many ultrasmall and ultrafast concepts and phenomena will continue to be put forth for notional consideration. The stunning achievements of nanofabrication in the last decade now allow for band-engineering and atomic-level structural tailoring not heretofore available or explorable except through naturally occurring atomic and molecular processes. Indeed, the techniques of atomic layer epitaxy facilitate the growth of structures atomic layer by atomic layer; as well, advanced lithographic techniques are capable of defining “lateral” structures with an accuracy of about 50 Angstroms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoeneisen, B. and Mead, C. A. (1972) Fundamental limitations in microelectronics — I. MOS technology, Solid-State Electronics 15, 819–829.

    Article  Google Scholar 

  2. Hoeneisen, B. and Mead, C. A. (1972) Fundamental limitations in microelectronics — II. Bipolar technology, Solid-State Electronics 15, 891–897.

    Article  Google Scholar 

  3. Singh, Jasprit (1991) Effect of structural disorder on electronic states in GaAs/AlGaAs quantum wires, Appl. Phys. Lett. 59, 3142–3144.

    Article  Google Scholar 

  4. Mickevicius, R., Mitin, V. V., Kim, K. W., Stroscio, Michael A., and Iafrate, Gerald J. (1992) Electron intersubband scattering by confined and localized phonons in real quantum wires, J. Phys. Condens. Matter 4, 4959–4970.

    Article  Google Scholar 

  5. Mickevicius, R., Mitin, V. V., Kim, K. W., and Stroscio, Michael A. (1992) Electron high field transport in multisubband quantum wire structures, Semicond. Sci. Technol. 7, B299–B301.

    Article  Google Scholar 

  6. Warren, Warren S., Rabitz, Herschel, and Dahleh, Mohammed (1993) Coherent control of quantum dynamics: The dream is alive, Science 259, 1581–1589.

    Article  MathSciNet  Google Scholar 

  7. Shi, Shenghua, and Rabitz, Herschel (1992) Optimal control of selectivity of unimolecular reactions via an excited electronic state with designed lasers, J. Chem. Phys. 97, 276–287.

    Article  Google Scholar 

  8. Beumee, Johan G. B., and Rabitz, Herschel (1992) Robust optimal control for selective vibrational excitation in molecules: A worst case analysis, J. Chem. Phys. 97 1353–1364.

    Article  Google Scholar 

  9. Rabitz, Herschel (1992) Optimal control of molecular motion, in A. D. Bandrauk and S. C. Wallace (eds.) Coherence Phenomena in Atoms and Molecules in Laser Fields, Plenum Press, New York, pp. 315–331.

    Chapter  Google Scholar 

  10. Dahleh, M, Pierce, A. P., and Rabitz, H. (1992) Design challenges for control of molecular dynamics, IEEE Control Systems 12, 93–94.

    Article  Google Scholar 

  11. Leobandung, Effendi, Guo, Lingjie, Wang, Yun, and Chou, Stephen Y. (1995) Observation of quantum effects and Coulomb blockage in silicon quantum dot transistors at temperatures over 100 Kelvin, J. Appl. Phys., in press.

    Google Scholar 

  12. Imamoglu, A. and Yamamoto, Y. (1993) Noise suppression in semiconductor p-i-n junctions: Transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes, Phys. Rev. Lett. 70, 3327–3330.

    Article  Google Scholar 

  13. Imamoglu, A., Yamamoto, Y., and Solomon, P. (1992) Single-electron thermionic-emission oscillations in p-n microjunctions, Phys. Rev. B 46, 9555–9563.

    Article  Google Scholar 

  14. Macucci, M., Hess, Karl, and Iafrate, G. J. (1995) Simulation of electronic properties and capacitance of quantum dots, J. Appl. Phys. 77, 3267–3276.

    Article  Google Scholar 

  15. Stroscio, Michael A. and Kim, K. W. (1994) Piezoelectric scattering of carriers from confined acoustic modes in cylindrical quantum wires, Phys. Rev. B 48, 1936–1941.

    Article  Google Scholar 

  16. Mohan, S., Mazumder, P., Haddad, G. I., Mains, R. and Sun, S. (1991) Ultrafast pipelined adders using resonant tunneling transistors, IEE Electronics Letters 21, 830–831

    Article  Google Scholar 

  17. Mohan, S., Mazumder, P., and Haddad, G.I. (1991) Subnanosecond 32-bit multiplier using negative differential resistance devices, IEE Electronics Letters 27, 1921–1931

    Article  Google Scholar 

  18. Mazumder, P. (1994) Picosecond pipelined adder using 3-terminal devices, IEE Proceedings E, Computers and Digital Technics 141, 104–110.

    Article  Google Scholar 

  19. Barenco, Adriano, Deutsch, David, and Ekert, Artur (1995) Conditional quantum dynamics and logic gates, Phys. Rev. Lett. 74, 4083–4086.

    Article  Google Scholar 

  20. Sleator, Tycho and Weinfurter, Harald (1995) Realizable universal quantum logic gates, Phys. Rev. Lett. 74, 4087–4090.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cirac, J. I. and Zoller, P. (1995) Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091–4094.

    Article  Google Scholar 

  22. Stroscio, Michael A., Kim, K. W., Yu, SeGi, and Ballato, Arthur (1994) Quantized acoustic phonon modes in quantum wires and quantum dots, J. Appl. Phys. 76, 4670–4675.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Iafrate, G.J., Stroscio, M.A. (1996). Challenges and Trends for the Application of Quantum-Based Devices. In: Luryi, S., Xu, J., Zaslavsky, A. (eds) Future Trends in Microelectronics. NATO ASI Series, vol 323. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1746-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1746-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7280-9

  • Online ISBN: 978-94-009-1746-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics