Skip to main content

The role of phototrophic sulfur bacteria as food for meiobenthic harpacticoid copepods inhabiting eutrophic coastal lagoons

  • Chapter
Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.)

Part of the book series: Developments in Hydrobiology ((DIHY,volume 117))

  • 144 Accesses

Abstract

Laboratory experiments were undertaken using Amonardia normani and Schizopera cf. compacta, two meiobenthic harpacticoid copepods commonly found in coastal lagoons. The first experiments were designed to determine if the phototrophic sulfur bacteria Chromatium gracile can be ingested by these copepods and at what concentrations. Egestion rate was used as an index of feeding rate. The response of the egestion rate, expressed in numbers of faecal pellets produced by copepod per day, as a function of bacterial concentration followed the functional model. A. normani attained constant feeding rates from the bacterial concentration of 1 × 107 cells ml−1 (5 µg C ml−1) onwards, S. cf. compacta attained constant feeding rates from 2.6 × 107 cells ml−1 (13 µg C ml−1) onwards. The faecal pellet volume changed significantly (p<0.05) between food concentrations for A. normani but not for S. cf. compacta (p>0.05). In order to investigate the effect of the phototrophic bacterial diet on the population dynamics of A. normani three groups of nauplii were maintained at 2 × 107 cells ml−1 and observed every day. The mortality of these nauplii was very high compared to those maintained on a diatom diet (Nitzschia constricta); only in one of the groups did some copepodites develop but no adults were ever observed. Adults fed on bacteria did not have different (p>0.05) survival rates compared to those fed on diatoms, nevertheless, the number of nauplii produced was significantly less (p<0.05) on the bacterial diet. These results lead us to suggest that although the phototrophic sulfur bacteria (Chromatium gracile) can be ingested by both copepod species it cannot sustain the full development of the A. normani population. Thus, a bloom of phototrophic sulfur bacteria does not seem to be a favourable situation for opportunistic benthic copepods to colonize eutrophic coastal lagoons after a dystrophic crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bougis, P., 1974. Ecologie du plancton marin. Tome II — Le zooplancton. Masson, Paris, 200 pp.

    Google Scholar 

  • Castel, J., 1979. Adaptation and reproductive cycle of the harpacticoid copepod Amonardia normani (Brady, 1872) in semi-enclosed lagoons of Arcachon Bay, France. In E. Naylor and G. Hartnoll (eds), Cyclic phenomena in marine plants and animals. Pergamon Press, Oxford and New York: 131–138.

    Google Scholar 

  • Castel, J., 1992. The meiofauna of coastal lagoon ecosystems and their importance in the food web. Vie Milieu 42: 125–135.

    Google Scholar 

  • Castel, J. & P. Lasserre, 1977. Colonisation et distribution spatiale des copépodes dans des lagunes semi-artificielles. In B. F. Keegan, P. O. Ceidigh & P. J. S. Boaden (eds), Biology of benthic organisms. Pergamon Press Oxford and New York: 129–146.

    Google Scholar 

  • Caumette, P., 1985. Développement des bactéries phototrophes et sulfato-rédutrices dans des lagunes peu profondes et des lagunes stratifiées. Etude de leur rôle dans le cycle du soufre et dans la production de biomasse. Doctoral Thesis. University of Aix-Marseille III. France, 325 pp.

    Google Scholar 

  • Caumette, P., 1986. Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prévost Lagoon, France). FEMS Microbiol. Ecol. 38: 113–124.

    CAS  Google Scholar 

  • Caumette, P., 1992. Bacterial communities in coastal lagoons. An overview. Vie Milieu 42: 111–123.

    Google Scholar 

  • Caumette, P., M. Pagano & L. Saint-Jean, 1983. Répartition verticale du phytoplancton, des bactéries et du zooplancton dans un milieu stratifié en Baie de Biétri (Lagune Ebrié, Côte d’Ivoire). Relations trophiques. Hydrobiologia 106: 135–148.

    Article  Google Scholar 

  • Conover, R. J., 1966. Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding. Limnol. Oceanogr 11: 1066–1071.

    Google Scholar 

  • Decho, A. W. & R. W. Castenholz, 1986. Spatial patterns and feeding of meiobenthic harpacticoid copepods in relation to resident microbial flora. Hydrobiologia 131: 87–96.

    Article  Google Scholar 

  • Fava, G. & E. Crotti, 1979. Effect of crowding on nauplii production during mating time in Tisbe clodiensis and T. holothuriae (Copepoda, Harpacticoida). Helgoländer wiss. Meeresunters. 32: 466–475.

    Article  Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus Limnol. Oceanogr. 17: 805–815.

    Article  Google Scholar 

  • Giere, O., 1993. Meiobenthology. The microscope fauna in aquatic sediments. Springer-Verlag, Berlin, 328 pp.

    Google Scholar 

  • Guérin, J.-P. & M. Rieper-Kirchner, 1991. Influence of three bacteria strains on the population dynamics of Tisbe holothuriae (Copepoda, Harpacticoida). Helgoländer. wiss. Meeresunters. 45: 493–511.

    Article  Google Scholar 

  • Guyoneaud, R., R. Matheron, R. Baulaigue, K. Podeur, A. Hirschler & P. Caumette, 1996. Anoxygenic phototrophic bacteria in eutrophic coastal lagoons of the french mediterranean and atlantic coasts (Prévost Lagoon, Arcachon Bay). Hydrobiologia 329 (Dev. Hydrobiol. 117): 33–43.

    Article  CAS  Google Scholar 

  • Harris, R. P., 1977. Some aspects of the biology of the Harpacticoid Copepod, Scottolana canadensis (Willey), maintained in laboratory culture. Chesapeake Sci. 18: 245–252.

    Article  Google Scholar 

  • Heinle, D. R., R. P. Harris, J. F. Ustach & D. A. Flemer, 1977. Detritus as food for estuarine copepods. Mar. Biol. 40: 341–353.

    Article  Google Scholar 

  • Karl, D. M., 1986. Determination of in situ microbial biomass, viability, metabolism, and growth. In J. S. Pointdexter & E. R. Leadbetter (eds), Bacteria in nature (Vol. 2) Methods and special applications in bacterial ecology. Plenum Press, New York — London: 85–176.

    Google Scholar 

  • Lonsdale, D. J. & J. S. Levinton, 1989. Energy budgets of latitudinally separated Scottolana canadensis (Copepoda: Harpacticoida). Limnol. Oceanogr. 34: 324–331.

    Article  Google Scholar 

  • Montagna, P. A., 1995. Rates of metazoan meiofaunal microbivory: a review. Vie Milieu 45: 1–9.

    Google Scholar 

  • Montagna, P. A. & G. F. Blanchard & A. Dinet, 1995. Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J. exp. mar. Biol. Ecol. 185: 149–165.

    Article  Google Scholar 

  • Mullin, M. M., 1963. Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 8: 239–250.

    Article  Google Scholar 

  • Mullin, M. M., E. F. Stewart & F. J. Fuglister, 1975. Ingestion by planktonic grazers as a function of concentration of food. Limnol. Oceanogr. 20: 259–262.

    Article  Google Scholar 

  • Parsons, T. R., R. J. LeBrasseur & J. D. Fulton, 1967. Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. J. Oceanogr. Soc. Jap. 23: 10–17.

    Google Scholar 

  • Pfennig, N. & H. G. Trüper, 1981. Isolation of members of the families Chromatiaceae and Chlorobiaceae. In Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. (eds), The Prokaryotes. Springer Verlag, Berlin: 279–289.

    Google Scholar 

  • Rieper, M., 1978. Bacteria as food for marine harpacticoid copepods. Mar. Biol. 45: 337–345.

    Article  Google Scholar 

  • Rieper, M., 1982. Feeding preferences of marine harpacticoid copepods for various species of bacteria. Mar. Ecol. Prog. Ser. 7: 303–307.

    Article  Google Scholar 

  • Rieper, M., 1984. Relationships between bacteria and marine copepods. In: Bactériologie Marine. CNRS, Paris: 169–172.

    Google Scholar 

  • Rieper, M., 1985. Some lower food web organisms in the nutrition of marine harpacticoid copepods: an experimental study. Helgoländer. wiss. Meeresunters. 39: 357–366.

    Article  Google Scholar 

  • Rieper, M. & C. Flotow, 1981. Feeding experiments with bacteria, ciliates and harpacticoid copepods. Kieler Meeresforsch., Sonderh. 5: 370–375.

    Google Scholar 

  • Schiemer, F., 1982. Food dependence and energetics of free living nematodes. I. Respiration, growth and reproduction of Caenorhabditis briggsae (Nematoda) at different levels of food supply. Oecologia (Berl.) 54: 108–121.

    Article  Google Scholar 

  • Schiemer, F, A. Duncan & R. Z. Klekowski, 1980. A bioenergetic study of a benthic nematode, Plectus palustris de Man 1881, throughout its life cycle. II. Growth, fecundity and energy budgets at different densities of bacterial food and general ecological considerations. Oecologia (Berl.) 44: 205–212.

    Article  Google Scholar 

  • Shaw, B. A., P. J. Harrison & R. J. Andersen, 1994. Evaluation of the copepod Tigriopus californicus as a bioassay organism for the detection of chemical feeding deterrents produced by marine phytoplankton. Mar. Biol. 121: 89–95.

    Article  Google Scholar 

  • Souza-Santos, L. P., J. Castel & P. J. P. dos Santos, 1995. Feeding rate cycle of the epibenthic harpacticoid copepod Harpacticus flexus: Laboratory experiments using faecal pellets counts. Vie Milieu 45: 75–83.

    Google Scholar 

  • Ustach, J. F., 1982. Algae, bacteria and detritus as food for the harpacticoid copepod, Heteropsyllus pseudonunni Coull and Palmer. J. exp. mar. Biol. Ecol. 64: 203–214.

    Article  Google Scholar 

  • Vanden Berghe, W. & M. Bergmans, 1981. Differential food preferences in three co-occurring species of Tisbe (Copepoda, Harpacticoida). Mar. Ecol. Prog. Ser. 4: 213–219.

    Article  Google Scholar 

  • Williams, T. D. & M. B. Jones, 1994. Effects of temperature and food quantity on postembryonic development of Tisbe battagliai (Copepoda: Harpacticoida). J. exp. mar. Biol. Ecol. 183: 283–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre Caumette Jacques Castel Rodney Herbert

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Souza-Santos, L.P., Castel, J., Santos, P.J.P. (1996). The role of phototrophic sulfur bacteria as food for meiobenthic harpacticoid copepods inhabiting eutrophic coastal lagoons. In: Caumette, P., Castel, J., Herbert, R. (eds) Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.). Developments in Hydrobiology, vol 117. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1744-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1744-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7279-3

  • Online ISBN: 978-94-009-1744-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics