Skip to main content

Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA

  • Chapter
Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.)

Part of the book series: Developments in Hydrobiology ((DIHY,volume 117))

  • 151 Accesses

Abstract

New methods based on PCR amplification of 16S rRNA genes from DNA samples extracted directly from the environment allow the description of microbial diversity in natural ecosystems without the need for cultivation. We have applied this technique to an extreme environment presumed to have very low diversity: the crystallizer ponds of a marine saltern with salinity over NaCl saturation. The molecular methodology has shown that indeed very low diversity can be found here. Prokaryotes belonging to the Bacteria domain are a minor component and only members of a closely related cluster of sequences were found, all relatives of the α-Proteobacteria (ca. 83% to Rhodopseudomonas marina). Halophilic Archaea were as expected the largest component of biomass in this environment. All the clones sequenced corresponded again to a highly homologous cluster (probably members of the same genus). However, all the sequences diverged considerably from the ones of the described genera of halophilic Archaea, in fact the data are consistent with the idea that the 16S rRNA genes directly amplified from the saltern correspond to members of an undescribed genus. This is remarkable since many collection strains sequenced come specifically from this saltern. Furthermore, 16S rDNA obtained from archaeal cultures isolated from the same sample had no homology to the sequences obtained by PCR amplification, instead they appear to be members of the well known genus Haloarcula. However, this concurs with the findings of other authors who obtained different organisms by culture from those detected by the sequences retrieved directly by PCR. A possible explanation is that culturability, in standard media, is the exception rather than the rule. To study the biodiversity gradient present along the salinity gradient found in a multi-pond solar saltern we have also applied a novel molecular strategy. This method is based on the restriction digestion of a population of 16S rDNA sequences directly amplified from an environmental sample. Digested fragments separated by Polyacrylamide gel electrophoresis generate characteristic profile data for estimation of diversity and overall similarities between the organisms of different environments. The methodology has been applied to a set of five ponds covering the salinity gradient from about twice that of seawater (6.4%) to NaCl precipitation (30.8%). Bacterial (eubacterial) diversity estimated from the complexity of the banding pattern obtained by restriction of the amplicons from the different ponds decreased with increasing salinity while for Archaea (archaebacteria) the reverse was true i.e. the higher the salinity the higher the number of bands. The similarities in taxonomic composition of the prokaryotic populations present in those ponds were evaluated from the number of restriction bands shared by the different samples. The relationships found among the different environments were independent of the enzyme used for digestion and were consistent with previous descriptions obtained by the study of isolates from the different environments. This technique appears to be promising as a rapid method for microbial biodiversity fingerprinting useful to compare several environments and detect major shifts in species composition of the microbial population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann, R. I., W. Ludwig & K-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.

    PubMed  CAS  Google Scholar 

  • Avaniss-Aghajani, E., K. Jones, D. Chapman & C. Brunk, 1994. A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. BioTechniques, 17:144–149.

    PubMed  CAS  Google Scholar 

  • Barbe, A., J. O. Grimalt, J. J. Pueyo & J. Albaiges, 1990. Characterization of model evaporitic environments through the study of lipid components. Org. Geochem. 8: 293–297.

    Google Scholar 

  • Barns, S. M, R. E. Fundyga, M. W. Jeffries & N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA. 91: 1609–1613.

    Article  PubMed  CAS  Google Scholar 

  • Beaucage, S. L. & M. H. Caruthers, 1981. Dideoxynucleotide phosphoramidites — a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedrom Lett. 22: 1859–1862.

    Article  CAS  Google Scholar 

  • Benlloch, S., A. J. Martínez-Murcia & F. Rodríguez-Valera, 1996. Bacterial and archaeal diversity as shown by partial sequencing of 16S rRNA genes directly amplified from a hypersaline environment System. Applied Microbiol. (in press).

    Google Scholar 

  • Brosius, J. P., T. J. Dull, D. D. Sleeter & H. F. Noyer, 1981. Gene organization and primary structure of a ribosomal RNA operon from E. coli. J. Mol. Biol. 148: 107–127.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, E. F., K. Y. Wu, B. B. Prézelin & R. V. M. Jovine; 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371: 695–697.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, E. F., 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA. 89: 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., K. McCallum & A. A. Davis, 1992. Novel major archaebacterial group from marine plankton. Nature 356: 148–149.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., K. McCallum & A. A. Davis, 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Envir. Microbiol. 59: 1294–1302.

    CAS  Google Scholar 

  • Giovannoni, S. J., T. B. Britschgi, C. L. Moyer & K. G. Fieldt, 1990a. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  CAS  Google Scholar 

  • Giovannoni, S. J., E. F. DeLong, T. M. Schmidt & N. R. Pace, 1990b. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Envir. Microbiol. 56: 2572–2575.

    CAS  Google Scholar 

  • Grant, W. D. & H. N. M. Ross, 1986. The ecology and taxonomy of halobacteria. FEMS Microbiol. Rev. 39: 9–15.

    Article  CAS  Google Scholar 

  • Höfle, M. G., 1992. Bacterioplankton community structure and dynamics after large-scale release of nonindigenous bacteria as revealed by low-molecular-weight-RNA analysis. Appl. Envir. Microbiol. 58: 3387–3394.

    Google Scholar 

  • Javor, B. J., 1983a. Planktonic standing crop and nutrients in a saltern ecosystem. Limnol. Oceanogr. 28: 153–159.

    Article  CAS  Google Scholar 

  • Javor, B. J., 1983b. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines. 6th International Symposium on Salt. Vol. 1. Salt Institute.

    Google Scholar 

  • Kamekura, M. & Y. Seno, 1993. Partial sequence of the gene for a serine protease from a halophilic archaeum Haloferax mediterranei R4, and nucleotide sequences of 16S rRNA encoding genes from several halophilic archaea. Experientia 49: 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Kushner, D. J. & M. Kamekura, 1988. Physiology of halophilic eubacteria. In: Rodríguez-Valera, F. (ed.), Halophilic Bacteria, Volume I. CRC Press, Inc. Boca Raton, Florida: 109–138.

    Google Scholar 

  • Lane, D. J., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin & N. R. Pace, 1985. Rapid determination of 16S rRNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA. 82: 6955–6959.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, H. & W. D. Grant, 1989. Genus I: Halobacterium. Elazari-Volcani 1957, 207AL, p. 2219. In J. T. Staley, M. P. Bryant, N. Pfennig & J. G. Holt (eds), Bergey’s Manual of Systematic Bacteriology, Vol. 3. The Williams & Wilkins Co., Baltimore.

    Google Scholar 

  • Liesack, W. & E. Stackebrandt, 1992. Occurrence of novel groups of the Domain Bacteria as revealed by analysis of genetic material isolated from an Australian Terrestrial Environment. J. Bacteriol. 174:5072–5078.

    PubMed  CAS  Google Scholar 

  • Maniatis, T., E. F. Fritsch & J. Sambrook, 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mankin, A. S., V. K. Kagramanova, N. L. Teterina, P. M. Rubtsov, E. N. Belova, A. M. Kopylov, L. A. Baratova & A. A. Gogdanov, 1985. The nucleotide sequence of the gene coding for the 16S rRNA from the archaebacterium Halobacterium halobium. Gene 37:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Marchuk, D., M. Drumm, A. Saulino & F. S. Collins, 1990. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl. Acids. Res. 19: 1154.

    Article  Google Scholar 

  • Martínez-Murcia, A. J., S. Benlloch & M. D. Collins, 1992. Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S rDNA sequencing: lack of congruence with results of DNA-DNA hybridization. Int. J. Syst. Bact. 42:412–421.

    Article  Google Scholar 

  • Martínez-Murcia, A. J., 1993. Doctoral Thesis. Department of Microbiology, University of Reading, Reading, U.K.

    Google Scholar 

  • Martínez-Murcia, A. J. & F. Rodríguez-Valera, 1994. The use of arbitrarily primed PCR (APPCR) to develop taxa specific DNA probes of known sequence. FEMS Microbiol. Lett. 124: 265–270.

    Article  PubMed  Google Scholar 

  • Martínez-Murcia, A. J., S. G. Acinas & F. Rodríguez-Valera, 1996. Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol. Ecol. (in press).

    Google Scholar 

  • Mellado Duran, M. E., 1994. Bacterias halofilas moderadas: filogenia y construccion de vectores de clonacion. PhD Thesis, University of Sevilla.

    Google Scholar 

  • Moyer, C. L., F. C. Dobbs & D. M. Karl, 1994. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Envir. Microbiol. 60: 871–879.

    CAS  Google Scholar 

  • Muyzer, G., E. C. De Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of Polymerase Chain Reaction-Amplified genes coding for 16S rRNA. Appl. Envir. Microbiol. 59: 695–700.

    CAS  Google Scholar 

  • Oren, A., 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiol. Ecol. 73: 41–48.

    Article  CAS  Google Scholar 

  • Pace, N. R., D. A. Stahl, D. J. Lane & G. J. Olsen, 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9: 1–55.

    CAS  Google Scholar 

  • Ralph, D., M. McClelland, J. Welsh, G. Baranton & P. Perolat, 1993. Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. J. Bacteriol. 175: 973–981.

    PubMed  CAS  Google Scholar 

  • Reysenbach, A-L., G. S. Wickham & N. R. Pace, 1994. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl. Envir. Microbiol. 60: 2113–2119.

    CAS  Google Scholar 

  • Rodríguez-Valera, F., F. Ruiz-Berraquero & A. Ramos-Cormenzana, 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 7: 235–243.

    Article  Google Scholar 

  • Rodríguez-Valera, F., 1986. The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiol. Rev. 39: 17–22.

    Article  Google Scholar 

  • Rodríguez-Valera, F., A. Ventosa, G. Juez & J. F. Imhoff, 1985. Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb. Ecol. 11: 107–115.

    Article  Google Scholar 

  • Sanger, F, S. Nicklen & A. R. Coulson., 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, T. M., E. F. DeLong & N. R. Pace, 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173: 4371–4378.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., W. Liesack & B. M. Goebel, 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. The FASEB J. 7: 232–236.

    CAS  Google Scholar 

  • Torsvik, V., S. Käre, R. Sørheim & J. Goksøyr, 1990. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Envir. Microbiol. 56: 776–781.

    CAS  Google Scholar 

  • Walsby, A. E., 1980. A square bacterium. Nature 283: 69.

    Article  Google Scholar 

  • Ward, D. M., R. Weller & M. M. Bateson, 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R. J. W. Weller & D.M. Ward, 1991.16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl. Envir. Microbiol. 57: 1146–1151.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Rodríguez-Valera .

Editor information

Pierre Caumette Jacques Castel Rodney Herbert

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Benlloch, S., Acinas, S.G., Martínez-Murcia, A.J., Rodríguez-Valera, F. (1996). Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA. In: Caumette, P., Castel, J., Herbert, R. (eds) Coastal Lagoon Eutrophication and ANaerobic Processes (C.L.E.AN.). Developments in Hydrobiology, vol 117. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1744-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1744-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7279-3

  • Online ISBN: 978-94-009-1744-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics