Skip to main content

Multi-Ten Gbit/s Soliton Transmission over Transoceanic Distances

  • Conference paper
Physics and Applications of Optical Solitons in Fibres ’95

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 3))

  • 121 Accesses

Abstract

The feasibility of 20 Gbit/s soliton-based transoceanic systems has been discussed through the 1,000 km-loop transmission experiments and the 8,100km straight-line transmission experiments. It is shown that the accumulation of the Gordon-Haus jitter can be effectively suppressed by using periodic dispersion compensation and inline optical filters. For 20 Gbit/s, 9,000 km transmission system, the Q2 of 19 dB, the sufficient power window of 2.5 dB, and robustness to the repeater output power reduction have been confirmed, in addition to the compatibility of the conventional supervisory scheme. Future prospect toward the 100 Gbit/s system is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. for example, Taga H., Edagawa N., Tanaka H., Suzuki M., Yamamoto S. and Wakabayashi R: 10 Gbit/s, 9000 km IM-DD transmission experiment using 274 Er-doped fiber amplifier repeaters, OFC’93, San Jose (1993), PD-1.

    Google Scholar 

  2. for example, Wakabayashi R, Namihira Y., Akiba S., Yamamoto S., Okawa M. and Yamamoto R: OS-A optical submarine cable system, SEE, Suboptics’93, Versailles (1993), 85–90.

    Google Scholar 

  3. Bergano N. S., Davidson C. R., Vengsarkar A. M., Nyman B. N., Evangelides S. G., Darcie J. M., Ma M., Evankow J. D., Corbett P. C., Mills M. A., Ferguson G. A., Pedrazzani J. R., Nagel J.A., Zyskind J. L., Sulhoff J. W. and Lucero A. J.: 100 Gbit/s WDM transmission of twenty 5 Gb/s NRZ data channels over transoceanic distances using a gain flattened amplifier chain, ECOC’95, Brussels, post-deadline paper, Th.A.3.1 (1995), 967–970.

    Google Scholar 

  4. Bergano N. S., Davidson C. R., Nyman B. N, Evangelides S. G., Darcie J. M., Evankow J. D., Corbett P. C, Mills M. A., Ferguson G. A., Pedrazzani J. R., Nagel J.A., Zyskind J. L., Sulhoff J. W., Lucero A. J. and Klein A.A.: 40 Gbit/s WDM transmission of eight 5 Gb/s data channels over transoceanic distances using the conventional NRZ modulation format, OFC’95, San Diego, post-deadline paper (1995), PD19.

    Google Scholar 

  5. Hasegawa A. and Tappert F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers, I Anomalous dispersion”, Appl. Phys. Lett., 23 (1973), 142–144.

    Article  CAS  Google Scholar 

  6. Nakazawa M., Suzuki K., Kubota H., Yamada E. and Kimura Y.: Dynamic optical soiiton communication, IEEE J. Quantum Electron., QE-26 (1990), 2095–2120.

    Article  Google Scholar 

  7. Hasegawa A. and Kodama Y.: Guiding-center solitons in optical fibers, Opt. Lett., 24 (1990), 1443–1445.

    Article  Google Scholar 

  8. Mollenauer L. F., Evangelides S. G. and Haus H. A.: Long-distance soliton propagation using lumped amplifiers and dispersion shifted fibers, IEEE J. Lightwave Tech., LT-9 (1991), 194–197.

    Article  Google Scholar 

  9. Blow K. J. and Doran N. J.: Average soiiton dynamics and the operation of soiiton systems with lumped amplifiers, IEEE Photon. Technol. Lett., 3 (1991), 369–371.

    Article  Google Scholar 

  10. Gordon J. P. and Haus H. A: Random walk of coherently amplified solitons in optical fiber transmission, Opt. Lett., 11, (1986), 665–667.

    Article  CAS  Google Scholar 

  11. Gordon J. P.: Interaction forces among solitons in optical fibers, Opt. Lett., 8 (1983), 596–598.

    Article  CAS  Google Scholar 

  12. Chu P. L. and Desem C: Mutual interaction between solitons of unequal amplitudes in optical fiber, Electron. Lett., 21 (1985), 1133–1134.

    Article  CAS  Google Scholar 

  13. Mecozzi A., Moores J. D., Haus H. A. and Lai Y.: Soiiton transmission control, Opt. Lett, 16 (1991), 1841–1843.

    Article  CAS  Google Scholar 

  14. Kodama Y. and Hasegawa A: Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect, Opt. Lett., 17 (1992), 31–33.

    Article  CAS  Google Scholar 

  15. Mollenauer L. F., Gordon J. P. and Evangelides S. G.: The sliding-frequency guiding filter: an improved form of soiiton jitter control, Opt. Lett., 17 (1992), 1575–1577.

    Article  CAS  Google Scholar 

  16. Nakazawa M., Suzuki K., Yamada E., Kubota R, Kimura Y. and Takaya M.: Experimental demonstration of soiiton data transmission over unlimited distance with soiiton control in time and frequency domains, Electron. Lett., 29 (1993), 729–730.

    Article  Google Scholar 

  17. Forysiak W., Blow K. J. and Doran N. J.: Reduction of Gordon-Haus jitter by post-transmission dispersion compensation, Electron. Lett., 29 (1993), 1225–1226.

    Article  Google Scholar 

  18. Suzuki M., Edagawa N, Taga H., TanakaH., Yamamoto S. and Akiba S.: Feasibility demonstration of 20 Gbit/s single channel soiiton transmission over 11500 km using alternating-amplitude solitons, Electron. Lett., 30 (1994), 1083–1084.

    Article  Google Scholar 

  19. Suzuki M., Monta I., Yamamoto S., Edagawa N., Taga H. and Akiba S.: Timing jitter reduction by periodic dispersion compensation in soiiton transmission, OFC’95, San Diego, post-deadline paper (1995), PD20.

    Google Scholar 

  20. Mollenauer L. F., Lichtman E., Neubelt M. J. and Harvey G. T.: Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single-channel, and over more than 13 Mm at 20 Gbit/s in a two-channel WDM, Electronics Lett, 29 (1993), 910–911.

    Article  Google Scholar 

  21. Favre F and LeGuen D.: 20 Gbit/s soliton transmission over 19 Mm using sliding-frequency guiding filters, Electron. Lett., 31 (1995), 991–992.

    Article  Google Scholar 

  22. Aubin G., Jeanney E, Montalant T., Moulu J., Pirio F., Ihomine J.-B. and Devaux F.: 20 Gbit/s soliton transmission over transoceanic distances with a 105 km amplifier loop, Electron. Lett., 31 (1995), 1079–1080.

    Article  Google Scholar 

  23. King J.P., Hardcastle I., Harvey HJ., Greene P.D., Shaw B.J., Jones M.G., Forbes D.J. and Wright M.C.: Polarisation-independent 20 Gbit/s soliton data transmission over 12500 km using amplitude and phase modulation soliton transmission control, Electron. Lett., 31 (1995), 1090–1091.

    Article  Google Scholar 

  24. Suzuki M., Monta I., Edagawa N., Yamamoto S., Taga H. and Akiba S.: Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission, Electron. Lett., 31 (1995), 2027–2029.

    Article  Google Scholar 

  25. Edagawa N., Montai., Suzuki M., Yamamoto S., Taga H. and Akiba S.: 20 Gbit/s, 8100 km straight-line single-channel soliton-based RZ transmission experiment using periodic dispersion compensation, ECOC’95, Brussels, post-deadline paper, Th.A.3.5 (1995), 983–986.

    Google Scholar 

  26. Morital., Suzuki M., Edagawa N., Yamamoto S., Taga H. and Akiba S.: 20 Gbit/s single-channel soliton transmission over 9000 km without inline filters, Electron. Lett., 31 (1995), to be appeared.

    Google Scholar 

  27. Mollenauer L. F., Evangelides S. G. and Gordon J. P.: Wavelength division multiplexing with solitons in ultra-long distance transmission using lumped amplifiers, J. Lightwave Technol., LT-9 (1991), 362–367.

    Article  Google Scholar 

  28. Nyman B.M., Evangelides S.G., Harvey G.T., Mollenauer L.F., Mamyshev P.V., Saylors M., Korotky S.K., Koren U., Mizrahi V., Strasser, T.A, Veselka J.J., Evankow J.D., Lucero AJ., Nagel JA., Sulhoff J.W., Zyskind J.L., Corbett P.C., Mills M.A. and Ferguson G.A.: Soliton WDM transmission of 8 × 2.5 Gbit/s, error free over 10 Mm, OFC’95, San Diego, post-deadline paper (1995), PD21.

    Google Scholar 

  29. Evangelides S. G., Nyman B. M., Mamyshev P.V., Mollenauer L.F. Veselka J. J. and Harvey G. T: Results of soliton WDM transmission experiments in long circulating loops, OSA annual meeting (1995), PD7.

    Google Scholar 

  30. Edagawa N., Suzuki M., Taga H., Tanaka H., Yamamoto S., Takahashi H. and Akiba S.: Robustness of 20 Gbit/s, 100 km-spacing, 1000 km soliton transmission system, Electron. Lett., 31 (1995), 663–665.

    Article  Google Scholar 

  31. Nakazawa M., Suzuki FC, Yamada E., Kubota H., and Kimura Y.: Straight-line soliton data transmission over 2000km at 20Gbit/s and 1000km at 40Gbit/s using Erbium-doped fiber amplifiers, Electron. Lett, 29 (1993), 1474–1476.

    Google Scholar 

  32. Nakazawa M., Kimura Y., Suzuki K., Kubota H., Komukai T., Yamada E., Sugawa T., Yoshida E., Yamamoto T., Imai T., Sahara A., Nakazawa H., Yamauchi O. and Umezawa M.: Field demonstration of soliton transmission at 10 Gbit/s over 2000 km in Tokyo metropolitan optical loop network, Electron. Lett. , 31 (1995), 992–994.

    Article  Google Scholar 

  33. Iwatsuki, K., Saito S., Suzuki K., Naka A., Kawai S., Matsuda T. and Nishi S.: Field demonstration of 10Gb/s-2700 kmsoliton transmission through commercial submarine optical amplifier system with distributed fiber dispersion and 90 km amplifier spacing, ECOC’95, Brussels, post-deadline paper, Th.A.3.6 (1995), 987–990.

    Google Scholar 

  34. Suzuki M.,Tanaka H., Edagawa N., Utaka K. and Matsushima Y.: Transform-limited optical pulse generation up to 20GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator, J. Lightwave Technol., LT-11 (1993), 468–473.

    Article  Google Scholar 

  35. Suzuki M., Tanaka H., Edagawa N. and Matsushima Y.: New applications of a sinusoidally driven InGaAsP electroabsorption modulator to in-line optical gates with ASE noise reduction effect, J. Lightwave Technol., LT-10 (1992), 1912–1918.

    Article  Google Scholar 

  36. Suzuki M., tanaka H. and Matsushima Y: InGaAsP electroabsorption modulator for high-bit-rate EDFA system, IEEE Photon. Tech. Lett., 4 (1992), 586–588.

    Article  Google Scholar 

  37. Nakazawa, M.,Yoshida, E, K., Yamada, Suzuki K., Kitoh, H. and Kawachi, M.: 80 Gbit/s soliton data transmission over 500 km with unequal amplitude solitons for timing clock extraction, Electron. Lett., 30 (1994), 1777–1778.

    Article  Google Scholar 

  38. Bergano, N. S., Kerfoot, F. W. and Davidson, C. R.: Margin measurements in optical amplifier systems, IEEE Photonics Technol. Lett., 5 (1993), 304–306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Suzuki, M., Edagawa, N., Morita, I., Yamamoto, S., Taga, H., Akiba, S. (1996). Multi-Ten Gbit/s Soliton Transmission over Transoceanic Distances. In: Hasegawa, A. (eds) Physics and Applications of Optical Solitons in Fibres ’95. Solid-State Science and Technology Library, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1736-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1736-1_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7277-9

  • Online ISBN: 978-94-009-1736-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics