Skip to main content

Dispersion Decreasing Fibres for Soliton Generation and Transmission Line Loss Compensation

  • Conference paper
Physics and Applications of Optical Solitons in Fibres ’95

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 3))

Abstract

We describe recent results concerning the fabrication and applications of optical fibres with accurately controlled and defined axial dispersion variation. We focus on two applications. Firstly, we describe the development of a 40 Gbit/s soliton transmitter based on beat-signal to soliton train conversion in a dispersion decreasing fibre. 40 GHz, < 5ps pulses with <300 fs timing jitter are first generated. 40 Gbit/s data is then successfully encoded via direct, all-optical modulation in a Kerr gate. Secondly, we demonstrate true soliton loss compensation in a fibre with a dispersion matched to the power loss profile within the fibre. Low distortion propagation of 2.0 ps pulses over 20 km (44 soliton periods) and of 3.5 ps pulses over 38 km (18 soliton periods) is obtained in both the temporal and spectral domains illustrating the quality of the loss compensation achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tajima, K.: Opt. Lett. 12 (1987), 54–56.

    Article  CAS  Google Scholar 

  2. Kuehl, H. H: J. Opt. Soc. Am. B 5 (1988), 709–713.

    Article  CAS  Google Scholar 

  3. Mamyshev, P. V., Chernikov, S. V. and Dianov, E. M.: IEEE J. Quantum Electron. 27 (1991), 2347–2351.

    Article  Google Scholar 

  4. Richardson, D. J., Chamberlin, R. P., Dong, L. and Payne, D. N.: Electron. Lett. 30 (1994), 1326–1327.

    Article  Google Scholar 

  5. Chernikov, S. V. and Mamyshev, P. V.: J. Opt. Soc. Am. B 8 (1991), 1634–1641.

    Article  Google Scholar 

  6. Bogatyrev, V. A. et al.: IEEE J. of Lightwave Technol. 9 (1991), 561–565.

    Article  CAS  Google Scholar 

  7. Chernikov, S. V., Richardson, D. J., Laming, R. I., Dianov, E. M. and Payne, D. N.: Electron. Lett. 28 (1992), 1220–1221;

    Article  Google Scholar 

  8. Chernikov, S. V. and Taylor, J. R.: Electron. Lett. 28 (1992), 931–932.

    Article  Google Scholar 

  9. Chernikov, S. V., Richardson, D. J., Laming, R. I., Dianov, E. M. and Payne, D. N.: Electron. Lett. 28 (1992), 931–932.

    Article  Google Scholar 

  10. Richardson, D. J., Chamberlin, R. P., Dong, L., Payne, D. N., Ellis, A. D., Widdowson, T. and Spirit, D. M.: Electron. Lett. 31 (1995), 470–472.

    Article  Google Scholar 

  11. Ellis, A. D., Pender, W. A., Widdowson, T., Richardson, D. J., Dong, L. and Chamberlain, R. P.: Electron. Lett. 31 (1995), 1362–1364.

    Article  Google Scholar 

  12. Richardson, D. J., Chamberlin, R. P., Dong, L. and Payne, D. N.: Electron. Lett. 31 (1995), 1681–1682.

    Article  Google Scholar 

  13. See e.g. Ainslie, B. J. and Day, C. R.: IEEE J. of Lightwave Technol. 8 (1986), 967;

    Article  Google Scholar 

  14. Snyder, A. W. and Love, J. D.: Optical Waveguide Theory, Chapman and Hall, (1983).

    Google Scholar 

  15. Chernikov, S. V., Taylor, J. R. and Kayshap, R.: Opt. Lett. 19 (1993), 539–542.

    Article  Google Scholar 

  16. Swanson, E. A., Chin, S. R., Hall, K., Rauschenbach, K. A., Bondurant, R. S. and Miller, J. W: Technical Digest Optical Fibre Communications, Post deadline paper, PD15–1, San Jose, (1994).

    Google Scholar 

  17. Ellis, A. D., Widdowson, T., Shan, X., Wickens, G. E. and Spirit, D. M.: Electron. Lett. 29 (1993), 990–991.

    Article  Google Scholar 

  18. Blow, K. J. and Doran, N. J.: Photon Tech. Lett. 3 (1991), 369–371.

    Article  Google Scholar 

  19. Hasegawa, A. and Kodama, Y.: Opt. Lett. 15 (1990), 1443–1445.

    Article  CAS  Google Scholar 

  20. Smith, N. J., Blow, K. J. and Andonovic, I.: J. Lightwave Technol. 10 (1992), 1329–1333.

    Article  Google Scholar 

  21. Treitinger, L. et al.: Proceedings European Conference on Optical Communications, Vol.1 Tu. A.2.2, Brussels, (1995), 189.

    Google Scholar 

  22. Gordon, J. P. and Haus, H. A.: Opt. Lett. 11 (1986), 665–667.

    Article  CAS  Google Scholar 

  23. Mollenauer, L. F., Gordon, J. P. and Evangelides, S. G.: Opt. Lett. 17 (1992), 1575–1577.

    Article  CAS  Google Scholar 

  24. Nakazawa, M., Yamada, E., Kubota, H. and Suzuki, E.: Electron. Lett. 27 (1991), 1270–1271.

    Article  Google Scholar 

  25. Mollenauer, L. F., Gordon, J. P. and Islam, M. N.: IEEE J. Quantum Electron. QE-22, 157–173, (1986).

    Article  CAS  Google Scholar 

  26. Nakazawa, M. and Kurokawa, K.: Electron. Lett. 27 (1991), 1369–1371.

    Article  Google Scholar 

  27. Evans, A. F., Stentz, A. J. and Boyd, R. W.: Proceedings European Conference on Optical Communications ECOC’94, Vol.1, Florence, (1994), 323–326.

    Google Scholar 

  28. Stentz, A. J., Boyd, R. W. and Evans, A. F.: Opt. Lett. 20 (1995), 1770–1772.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Richardson, D.J., Chamberlain, R.P., Dong, L., Payne, D.N. (1996). Dispersion Decreasing Fibres for Soliton Generation and Transmission Line Loss Compensation. In: Hasegawa, A. (eds) Physics and Applications of Optical Solitons in Fibres ’95. Solid-State Science and Technology Library, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1736-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1736-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7277-9

  • Online ISBN: 978-94-009-1736-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics