Skip to main content

High-Speed Fiber Transmission Using Optical Phase Conjugation

  • Conference paper
Physics and Applications of Optical Solitons in Fibres ’95

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 3))

Abstract

We have shown the effectiveness and possible application of optical phase conjugation (OPC) in high-speed optical fiber transmission. By compensating for both chromatic dispersion and the optical Kerr effect in a transmission fiber by OPC, we can increase the transmission distance and capacity in future high-speed fiber transmission systems. Waveform pre-compensation using a fiber compensator and a phase conjugator at the transmitting terminal can potentially upgrade the conventional wavelength-division multiplexed transmission systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G. P.: Nonlinear Fiber Optics., Academic Press, New York, 1989.

    Google Scholar 

  2. Quellette, F.: Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides, Opt. Lett., 12 (1987), 847–849.

    Article  Google Scholar 

  3. Koch, T. L. and Alferness, R. C: Dispersion compensation by active predistorted signal synthesis, J. Lightwave Technol., LT-3 (1985), 800–805.

    Article  Google Scholar 

  4. Poole, C. D., Wiesenfeld, J. M. and McCormick, A. R.: Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber, Opt. Lett., 1 7 (1992), 985–987.

    Article  Google Scholar 

  5. Vengsarkar, A. M. and Reed, W. A.: Dispersion-compensating single-mode fibers: efficient designs for first-and second-order compensation, Opt. Lett., 18 (1993), 924–926.

    Article  CAS  Google Scholar 

  6. Onishi, ML, Koyano, Y., Shigematsu, M., Kanamori, H. and Nishimura, M.: Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB, Electron. Lett., 3 0 (1994), 161–163.

    Article  Google Scholar 

  7. Hasegawa, A. and Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., 23 (1973), 142–144.

    Article  CAS  Google Scholar 

  8. Mollenauer, L. F., Stolen, R. H. and Gordon, J. P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., 45 (1980), 1095–1098.

    Article  Google Scholar 

  9. Yariv, A., Fekete, D. and Pepper, D. M: Compensation for channel dispersion by nonlinear optical phase conjugation, Opt. Lett., 4 (1979), 52–54.

    Article  CAS  Google Scholar 

  10. Kikuchi, K. and Lorattanasane, C.: Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using nonlinear optical phase conjugator: OAA’93, SuC1 (1993), 22–25.

    Google Scholar 

  11. Watanabe, S., Chikama, T., Ishikawa, G., Terahara, T. and Kuwahara, H.: Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation: IEEE Photon. Technol.Lett., 5 (1993), 1241–1243.

    Article  Google Scholar 

  12. Watanabe, S., Naito, T. and Chikama, T.: Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation, IEEE Photon. Technol. Lett., 5 (1993), 92–95.

    Article  Google Scholar 

  13. Jopson, R. M., Gnauck, A. H. and Derosier, R. M.: 10-Gb/s 360-km transmission over normal-dispersion fiber using mid-system spectral inversion, OFC’93, PD3 (1993), 17–20.

    Google Scholar 

  14. Tatham, M. C., Sherlock, G. and Westbrook, L. D.: Compensation of fiber chromatic dispersion by mid-way spectral inversion in a semiconductor laser amplifier, ECOC’93, ThP12.3 (1993), 61–64.

    Google Scholar 

  15. Watanabe, S., Ishikawa, G., Naito, T. and Chikama, T.: Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber, J. Lightwave Technol., 12 (1994), 2139–2146.

    Article  Google Scholar 

  16. Laming, R. I., Richardson, D. J., Taverner, D. and Payne, D. N.: Transmission of 6 ps linear pulses over 50 km of standard fiber using midpoint spectral inversion to eliminate dispersion, IEEE J. Quantum Electron., 3 (1994), 2114–2119.

    Article  Google Scholar 

  17. Ellis, A. D., Tatham, M. C., Davies, D. A. O., Nessett, D., Moodie, D. G. and Sherlock, G.: 40 Gb/s transmission over 202 km of standard fiber using midspan spectral inversion, Electron. Lett., 31 (1995), 299–301.

    Article  Google Scholar 

  18. Forysiak, W. and Doran, N. J.: Conjugate solitons in amplified optical fiber transmission systems, Electron. Lett., 30 (1994), 154–155.

    Article  Google Scholar 

  19. Wen, S. and Chi, S.: Undoing of soliton interaction by optical phase conjugation, Electron. Lett., 30 (1994), 663–664.

    Article  Google Scholar 

  20. Yoshioka, H. and Fujii, Y.: Soliton transmission using optical phase-conjugators-Compensation for timing jitter due to soliton-soliton interaction and SSFS-, IOOC’95, FD3–3 (1995), 111–112.

    Google Scholar 

  21. Kurtzke, C. and Gnauck, A.: How to increase capacity beyond 200 Tbit/s km without solitons, ECOC’93, ThC 12.12 (1993), 45–48.

    Google Scholar 

  22. Watanabe, S. and Shirasaki, M.: Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation, J. Lightwave Technol., 14 (1996), 243–248.

    Article  Google Scholar 

  23. Watanabe, S., Kaneko, S., Ishikawa, G., Sugata, A., Ooi, H. and Chikama, T.: 20 Gb/s fiber transmission experiment over 3000 km by waveform pre-compensation using fiber compensator and optical phase conjugator, IOOC’95, PD2–6 (1995), 31–32.

    Google Scholar 

  24. Jopson, R. M., Gnauck, A. H., Iannone, P. P. and Derosier, R. M.: Polarization-independent mid-system spectral inversion in a 2-channel, 10-Gb/s, 560-km transmission system, OFC’94, PD22 (1994), 104–107.

    Google Scholar 

  25. Watanabe, S.: Cancellation of four-wave mixing in a single-mode fiber by midway optical phasec onjugation, Opt. Lett., 19 (1994), 1308–1310.

    Article  CAS  Google Scholar 

  26. Gnauck, A. H., Jopson, R. M. and Derosier, R. M.: Demonstration of nonlinearity compensation by spectral inversion in a three-channel WDM system, ECOC’94, PD (1994), 91–94.

    Google Scholar 

  27. Desurvire, E.: Erbium-doped fiber amplifiers, John Wiley & Sons, New York (1994).

    Google Scholar 

  28. Lorattanasane, C. and Kikuchi, K.: Design of long-distance optical transmission systems using midway optical phase conjugation, IEEE Photon. Technol. Lett., 7 (1995), 1375–1377.

    Article  Google Scholar 

  29. Kato, T., Suetsugu, Y., Takagi, M., Sasaoka, E. and Nishimura, M.: Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light, Opt. Lett., 20 (1995), 988–990.

    Article  CAS  Google Scholar 

  30. Ogita, S., Kotaki, Y., Matsuda, M., Kuwahara, Y., Onaka, H., Miyata, H. and Ishikawa, H.: FM response of narrow-linewidth, multielectrode 03BB/4 shift DFB laser, IEEE Photon. Technol. Lett., 2 (1990), 165–166.

    Article  Google Scholar 

  31. Cotter, D.: Stimulated Brillouin scattering in monomode optical fiber, J. Opt. Commun., 4 (1983), 10–19.

    Article  CAS  Google Scholar 

  32. Bergano, N. S., Davidson, C. R., Vengsarker, A. M., Nyman, B. M, Evangelides, S. G., Darcie, J. M., Ma, M., Evankow, J. D., Corbett, P. C., Mills, M. A., Ferguson, G. A., Pedrazzani, J. R., Nagel, J. A., Zyskind, J. L., Sulhoff, J. W. and Lucero, A. J.: 100 Gb/s WDM transmission of twenty 5 Gb/s NRZ data channels over transoceanic distances using a gain flattened amplifier chain, ECOC’95, Th.A.3.1, (1995), 967–970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Watanabe, S., Chikama, T. (1996). High-Speed Fiber Transmission Using Optical Phase Conjugation. In: Hasegawa, A. (eds) Physics and Applications of Optical Solitons in Fibres ’95. Solid-State Science and Technology Library, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1736-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1736-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7277-9

  • Online ISBN: 978-94-009-1736-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics