Skip to main content

Physical Aspects of Adhesion of Leukocytes

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 322))

Abstract

These lectures will discuss the application of hydrodynamics, mechanics and statistical mechanics to white blood cell adhesion and the immune response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Cohnheim, Lectures on General Pathology (The New Sydenham Society, London, 1889).

    Google Scholar 

  2. H.L.Goldsmith and S.Spain, Microvasc. Res. 27, 204 (1984);

    Article  Google Scholar 

  3. U.Nobis, A.R.Pries, G.R.Cokelet, and P.Gaehtgens, Microvasc. Res. 29, 295 (1985).

    Article  Google Scholar 

  4. E.Fiebig, K.Ley, and K.E.Arfors, J. Microcirc. Clin. Exp. 10, 127 (1991).

    Google Scholar 

  5. S.Chien, Adv. Shock Res. 8, 71 (1982).

    Google Scholar 

  6. See for instance: T.A.Springer, Nature 346, 452 (1990).

    Article  Google Scholar 

  7. W.Addison, Trans. Provine. Med. Surg. Ass. 11, 223 (1843).

    Google Scholar 

  8. A. Atherton and G.V.R. Born, J.Physiol. 222, 447 (1972), ibid, 223, 157 (1973).

    Google Scholar 

  9. Granger, D. and P. Kubes 1994. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. Journal of Leukocyte Biology. 55:662–675.

    Google Scholar 

  10. A.Lasky, Science, 258, 861 (1992).

    Article  Google Scholar 

  11. C.E.Butcher, Am. J. Pathol. 136, 3 (1990).

    Google Scholar 

  12. See for instance: O.Spertini, G.Kansas, J.Munro, J.Griffin, and T.Tedder, Nature, 349, 691(1991)

    Article  ADS  Google Scholar 

  13. M.L.Phillips et al. Science 250, 1130 (1990).

    Article  ADS  Google Scholar 

  14. L.A.Lasky, M.S.Singer, D.Dowbenko, Y.Imai, W.Henzel, C.Fennie, S.Watson, and S.D.Rosen, Cold Spring Harbor Symposia on Quantitative Biology, Vol.LVII (Cold Spring Harbor Laboratory Press, 1992).

    Google Scholar 

  15. K.Ley, M.Cerrito, and K-E Arfors, Am. J. Physiol. 260, H1667, (1991).

    Google Scholar 

  16. N.Sharon and H.Lis, Scientific American, Jan. 1993, 74.

    Google Scholar 

  17. A.Huber, S.Kunkel. R.Todd, J.Weiss, Science, 254, 99 (1991).

    Article  ADS  Google Scholar 

  18. K-E Arfors et al., Blood 69, 338 (1987).

    Google Scholar 

  19. T.Kishimoto, M.Jutila, E.Berg, and E.Butcher, Science, 245, 1238 (1989).

    Article  ADS  Google Scholar 

  20. K.L.Ley, E.Lundgren, E.Berger, and K-E Arfors, Blood, 73, 1324 (1989).

    Google Scholar 

  21. U. von Andrian et al., Proc.Natl.Acad.Sci. USA 88, 7539 (1991)

    Google Scholar 

  22. M.A.Hubbe, Prog.Surf.Sci. 11, 65 (1981).

    Article  ADS  Google Scholar 

  23. See also: G.W.Schmid-Schonbein, Y.C.Fung, and B.WZeifach, Circ. Res. 36, 173 (1974).

    Google Scholar 

  24. J.V.Forrester and J.M.Lackie, J.Cell Sci. 70, 93 (1984).

    Google Scholar 

  25. H.N.Mayrovitz, M.P.Wiedeman, and R.F.Tuma, Thromb. Haemostasis 38, 823 (1977).

    Google Scholar 

  26. M.B.Lawrence, C.W.Smith, S.G.Eskin, and L.V.McIntire, Blood, 75, 227 (1990).

    Google Scholar 

  27. G.S. Worthen, L.A.Smedly, M.G.Tonnesen, D.Ellis, N.F.Voelkel, J.T.Reeves, and P.M.Henson, J. Appl. Physiol. 63, 2031 (1987).

    Google Scholar 

  28. C.F.Dewey, M.A.Gimbrone, S.R.Bussolari, and P.F.Davies, J. Biochem. Microbiol. Tech. Eng. 103, 185 (1981).

    Google Scholar 

  29. A. van Grondelle, G.Worthen, D.Ellis, M.Mathias, R.Murphy, R. Strife, J.T.Reeves, and N.F.Voelkel, J.Appl. Physiol. 57, 388 (1984).

    Google Scholar 

  30. C.Helm, E.A.Bayer, J.Israellachvili, and W.Knoll, Nature (1991)

    Google Scholar 

  31. E-L Florin, V.T.Moy, and H.E.Gaub, preprint TU Munchen.

    Google Scholar 

  32. T.P.Stossel, J.H.Hartwig, H.L.Yin, and O.Stendhal, Biochem.Soc.Symp. 45, 51 (1980).

    Google Scholar 

  33. M.B.Lawrence and T.A.Springer, Cell, 65, 859 (1991).

    Article  Google Scholar 

  34. P.B.Canham, J.Theor.Biol. 26, 61 (1970).

    Article  Google Scholar 

  35. W.Helfrich, Z.Naturforsch. 28c, 693 (1973).

    Google Scholar 

  36. For a review: E.Evans and M.Dembo in Biomechanics of Active Movement and Deformation of Cells, edited by N.Akkas. NATO ASI Series, Vol.42 (Springer, Berlin, 1990).

    Google Scholar 

  37. N.H.Valerius, O.Stendhal, J.H.Hartwig, and T.P.Stossel, Cell 24, 195 (1981);

    Article  Google Scholar 

  38. J.H. Hartwig and H.L. Yin, Cell Motil.Cytoskel. 10, 117 (1988).

    Article  Google Scholar 

  39. E.Evans and A.Yeung, Biophys.J. 56,151 (1989).

    Article  ADS  Google Scholar 

  40. P.A.Valberg and H.A.Feldman, Biophys.J 52, 551 (1987).

    Article  Google Scholar 

  41. D.R.Nelson and L.Peliti, J.Phys.(Paris) 48, 1085 (1987).

    Article  Google Scholar 

  42. J.Aronovitz and T.Lubensky, Phys.Rev.Lett. 60,2634 (1988).

    Article  ADS  Google Scholar 

  43. See for instance: L.D. Landau and E.M. Lifshitz, Theory of Elasticity, (Pergamom, New York, 1970).

    Google Scholar 

  44. E.Evans and R.Skalak, Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, 1980).

    Google Scholar 

  45. G.I.Bell, Science 200, 618 (1978);

    Article  ADS  Google Scholar 

  46. G.I.Bell, M.Dembo, and P.Bongrand, Biophys.J. 45, 1051(1984).

    Article  Google Scholar 

  47. W.Helfrich, Z. Naturforsch. 33a, 305 (1978);

    ADS  Google Scholar 

  48. W.Helfrich and R.M.Servuss, Nuovo Cimento D3, 137 (1984);

    ADS  Google Scholar 

  49. R.Lipovsky, Nature, 349, 475 (1991).

    Article  ADS  Google Scholar 

  50. A.Adamson, Physical Chemistry of Surfaces, Ch.II, (Wiley, New York, 1982).

    Google Scholar 

  51. E.Evans Biophys. J. 48, 175 (1985).

    Article  ADS  Google Scholar 

  52. R.G.Cox and S.K.Hsu, Intl. J. Multiphase Flow, 3, 201 (1977).

    Article  MATH  Google Scholar 

  53. See also J.B.McLaughlin, J. Fluid Mech. 246, 249 (1993).

    Article  ADS  MATH  Google Scholar 

  54. K. Sekimoto and L. Leibler, Europhys.Lett., 23, 113 (1993).

    Article  ADS  Google Scholar 

  55. Viscous lift forces are even functions of the shear-rate, since reversing the flow-direction must leave the lift force invariant. The lift force is due to the deformation of the sphere by the viscous stress \( \eta \dot{\gamma } \) so it must depend on the shear-rate as \( {(\eta \dot{\gamma })^2} \) for low shear rates - as is the case for the lift force on cylinders (45). The normal force also must depend on the elastic tension γ since perfect spheres have no viscous lift force and g measures the energy cost resisting deformation of the sphere. The lift force also must depend on the geometrical dimensions of the object, R and u in our case. The only way to create a quantity with dimension of force from the quantities \( {(\eta \dot{\gamma })^2} \), γ, R, and u is through the combination \( \frac{{{{(\eta \dot{\gamma })}^2}}}{\gamma }{R^3} f(\vartheta ) \) with f(x) a dimensionless function of the contact angle. Note that this expression vanishes in the limit of large γ, as it should. Unlike the case of infinite cylinders, the fluid flowing around an adhering sphere is not forced to squeeze through a narrow slit. This means that we should expect no singular dependence of the force on the geometrical parameters in which case f(x) must be a well behaved function which we assume to be of order one.

    Google Scholar 

  56. P. Bowden and D. Tabor, Friction, An Introduction to Tribology, Anchor Books, New York, 1973. Ref.12, Ch.XII.

    Google Scholar 

  57. G.W. Schmid-Schonbein, S. Usami, R. Skalak, and S. Chien, Microvasc. Res. 19, 45 (1980).

    Article  Google Scholar 

  58. E. Guyon, J-P Hulin, and L. Petit, Hydrodynamique Physique (InterEditions CNRS, Paris, 1991), pg. 367

    Google Scholar 

  59. R. Abney, J. Braun, and J. Owicki, Biophys. J., 52, 441 (1987).

    Article  ADS  Google Scholar 

  60. G. I. Bell, Science, 200, 618 (1978);

    Article  ADS  Google Scholar 

  61. G. I. Bell, M. Dembo, and P. Bongrand, Biophys. J., 45, 1051(1984).

    Article  Google Scholar 

  62. The glycoprotein ligands of selectin adhesion molecules are mobile, see: L. A. Lasky, M. S. Singer, D. Dowbenko, Y. Imai, W. Henzel, C. Fennie, S. Watson, and S. Rosen, in Cold Spring Harbor Symposia on Quantitative Biology, Vol.LVII (Cold Spring Harbor Lab. Press, 1992).

    Google Scholar 

  63. D. Zuckerman and R. Bruinsma, to be published.

    Google Scholar 

  64. R. Sari, D. Merlini, and R. Calinon, J. Phys. A9, 1539 (1976).

    ADS  Google Scholar 

  65. R. Sari and D. Merlini, J. Stat. Phys., 14, 91 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  66. E. Hauge and P. Hemmer, Phys. Norv., 5, 209 (1971).

    Google Scholar 

  67. A. Alastuey and B. Jancovici, J. Physique, 42, 1, (1981).

    MathSciNet  Google Scholar 

  68. The lower bound on rc follows from the exact solution at r=2, while the upper bound is the Kosterlitz-Thouless limit.

    Google Scholar 

  69. For Δh/ζ ≪ ln1/2(l/ξ20) the entropie force (Eq. 5.8b) between the assemblies becomes the dominant long range interaction. We have not explored this regime.

    Google Scholar 

  70. M. E. Fisher and D. S. Fisher, Phys.Rev. B 25, 3192 (1982).

    Article  ADS  Google Scholar 

  71. This argument does not include excess collisions near the adhesion sites which reduce the effective LK binding energy.

    Google Scholar 

  72. Integrin molecules are believed to be attached to the cytoske-leton which restricts their mobility. See E. Luna, Science, 258, 955 (1992).

    Article  ADS  Google Scholar 

  73. M. Lawrence and T. Springer, Cell, 65, 59 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bruinsma, R. (1996). Physical Aspects of Adhesion of Leukocytes. In: Riste, T., Sherrington, D. (eds) Physics of Biomaterials: Fluctuations, Selfassembly and Evolution. NATO ASI Series, vol 322. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1722-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1722-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7271-7

  • Online ISBN: 978-94-009-1722-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics