Skip to main content

Molecular Evolutionary Biology

The Concept and its Applications to Biotechnology

  • Chapter
Physics of Biomaterials: Fluctuations, Selfassembly and Evolution

Part of the book series: NATO ASI Series ((NSSE,volume 322))

  • 207 Accesses

Abstract

Current biology is facing a grand synthesis combining knowledge from three different disciplines: molecular biology, developmental biology, and evolutionary biology. The first step in this direction was taken already in the late sixties by the pioneering works of Sol Spiegelman [1] who applied biochemical methods to investigate fundamental questions of evolutionary optimization. About the same time Manfred Eigen [2] conceived a kinetic theory of evolution at the molecular level. Since then the study of the evolution of molecules in laboratory systems has become a research area in its own rights. It contrasted and complemented conventional studies in molecular evolution by adding a dynamical component to the essentially phylogenetic issues of sequence data comparisons as initiated and scolarly developed, for example, by Magaret Dayhoff [3]. Meanwhile experiments with replicating molecules in the test tube have shown that evolution in the sense of Charles Darwin’s principle of variation and selection is no priviledge of cellular life: optimization of properties related to the fitness of replicating molecules is observed readily in vitro with naked ribonucleic acid (RNA) molecules in evolution experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spiegelman, S. (1971) An approach to the experimental analysis of precellular evolution, Quart.Rev.Biophys. 4, 213–253.

    Article  Google Scholar 

  2. Eigen, M. (1971) Selforganization of matter and the evolution of biological macromolecules, Naturwissenschaften 58, 465–523.

    Article  ADS  Google Scholar 

  3. Dayhoff, M.O., Park, CM. (1969) Cytochrome-c: Building a phylogenetic tree, in M.O.Dayhoff (ed.), Atlas of protein sequence and structure, National Biomedical Research Foundation: Silver Springs (Md.), Vol.4, pp. 7–16.

    Google Scholar 

  4. Hamming, R.W. (1986) Coding and information theory, 2nd Ed. Prentice Hall, Englewood Cliffs (NJ).

    MATH  Google Scholar 

  5. Wright, S. (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution, in D.F.Jones (ed.), Proceedings of the Sixth International Congress of Genetics, Vol.1, pp.356–366. Ithaca (NY).

    Google Scholar 

  6. Feinberg, M. (1977) Mathematical aspects of mass action kinetics, in L.Lapidus, N.R.Amundson (eds.), Chemical Reactor Theory. A Review, pp.1–78. Prentice-Hall, Inc. Englewood Cliffs (NJ).

    Google Scholar 

  7. Biebricher, C.K., Eigen, M. (1988) Kinetics of RNA replication by Qβ replicase, in E.Domingo, J.J.Holland, P.Ahlquist (eds.), RNA Genetics. Vol.1: RNA directed virus replication, pp.1–21. CRC Press: Boca Raton (Fl.).

    Google Scholar 

  8. Biebricher, C.K., Luce, R. (1993) Sequence analysis of RNA species synthesized by Qβ replicase without template, Biochemistry 32, 4848–4854.

    Article  Google Scholar 

  9. Pley, H.W., Flaherty, K.M., McKay, D.B. (1994) Three-dimensional structure of a hammerhead ribozyme, Nature 372, 68–74.

    Article  ADS  Google Scholar 

  10. Fontana, W., Konings, D.A.M., Stadler, P.F., Schuster, P. (1993) Statistics of RNA secondary structures, Biopolymers 33, 1389–1404.

    Article  Google Scholar 

  11. Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P. (1993) RNA foling and combinatory landscapes, Phys.Rev.E. 47, 2083–2099.

    Article  ADS  Google Scholar 

  12. Bonhoeffer, S., McCaskill, J.S., Stadler, P.F., Schuster, P. (1993) RNA multi-structure landscapes, Eur.Biophys. J. 22, 13–24.

    Article  Google Scholar 

  13. Tacker, M., Fontana, W., Stadler, P.F., Schuster, P. (1994) Statistics of RNA melting kinetics, Eur.Biophys.J. 23, 29–38.

    Article  Google Scholar 

  14. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P. (1994) Fast folding and comparison of RNA secondary structures, Mh.Chem. 125, 167–188.

    Google Scholar 

  15. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L. (1994) From sequences to shapes and back: a case study in RNA secondary structures, Proc.Roy.Soc.Lond.B 255, 279–284.

    Article  ADS  Google Scholar 

  16. Schuster, P., Stadler, P.F. (1994) Landscapes: complex optimization problems and biopolymer structures, Computers Chem. 18, 295–324.

    Article  MATH  Google Scholar 

  17. Schuster, P. (1995) How to search for RNA structures. Theoretical concepts in evolutionary biotechnology, J.Biotechnology, in press.

    Google Scholar 

  18. Grüner, W. (1994) Evolutionary optimization on RNA folding landscapes, Doctoral Thesis. Universität Wien.

    Google Scholar 

  19. Reidys, C. (1995) Neutral networks of RNA secondary structures, Dotoral Thesis. Friedrich-Schiller-Universität Jena.

    Google Scholar 

  20. Reidys, C., Stadler, P.F., Schuster, P. (1995) Generic properties of combinatory maps. Neutral networks of RNA secondary structures, submitted to Bull.Math.Biol.

    Google Scholar 

  21. Kauffman, S.A., Levin, S. (1987) Towards a general theory of adaptive walks on rugged landscapes, J.Theor.Biol. 128, 11–45.

    Article  MathSciNet  Google Scholar 

  22. Fontana, W., Schuster, P. (1987) A computer model of evolutionary optimization, Biophys.Chem. 26, 123–147.

    Article  Google Scholar 

  23. Fontana, W., Schnabl, W., Schuster, P. (1989) Physical aspects of evolutionary optimization and adaptation, Phys. Rev. A 40, 3301–3321.

    Article  ADS  Google Scholar 

  24. Gillespie, D.T. (1977) Exact stochastic simulation of coupled chemical reactions, J.Phys.Chem. 81, 2340–2361.

    Article  Google Scholar 

  25. Eigen, M., McCaskill, J., Schuster, P. (1988) The molecular quasispecies — An abridged account, J.Phys.Chem. 92, 6881–6891.

    Article  Google Scholar 

  26. Eigen, M., McCaskill, J., Schuster, P. (1989) The molecular quasispecies, Adv.Chem. Phys. 75, 149–263.

    Article  Google Scholar 

  27. Huynen, M., Fontana, W., Stadler, P.F. (1994) Unpublished results. Santa Fe (N.M.).

    Google Scholar 

  28. Kimura, M. (1983) The neutral theory of molecular evolution, Cambridge University Press. Cambridge (U.K.).

    Google Scholar 

  29. Derrida, B., Peliti, L. (1991) Evolution in a flat fitness landscape, Bull.Math.Biol. 53, 355–382.

    MATH  Google Scholar 

  30. Weber, J., Reidys, C., Forst, C., Schuster, P. (1995) Unpublished results. Jena (Germany).

    Google Scholar 

  31. Eigen, M., Gardiner, W. (1984) Evolutionary molecular engineering based on RNA replication, Pure Appl.Chem. 56, 967–978.

    Article  Google Scholar 

  32. Kauffman, S.A. (1986) Autocatalytic sets of proteins, J.Theor.Biol. 119, 1–24.

    Article  Google Scholar 

  33. Joyce, G.F. (1992) Directed molecular evolution, Sci.Am. 267 (6), 48–55.

    Article  Google Scholar 

  34. Kauffman, S.A. (1992) Applied molecular evolution, J.Theor.Biol. 157, 1–7.

    Article  Google Scholar 

  35. Ellington A.D. (1994) Aptamers achieve the desired recognition, Current Biology 4 427–429.

    Article  Google Scholar 

  36. Schober, A., Günther, R., Schwienhorst, A., Lindemann, B. (1993) Accurate high speed handling of very small biological samples, BioTechniques 15, 324–329.

    Google Scholar 

  37. Szathmáry, E., Maynard-Smith, J. (1995) The major evolutionary transitions, Nature 374, 227–232.

    Article  ADS  Google Scholar 

  38. Eigen, M., Schuster, P. (1985) Stages of emerging life - Five principles of early organization., J.Mol.Evol. 19, 47–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schuster, P., Grüner, W. (1996). Molecular Evolutionary Biology. In: Riste, T., Sherrington, D. (eds) Physics of Biomaterials: Fluctuations, Selfassembly and Evolution. NATO ASI Series, vol 322. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1722-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1722-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7271-7

  • Online ISBN: 978-94-009-1722-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics