Skip to main content

Evolutionary Mechanisms Involved in the Formation of Tandem Repetitive Non-Coding DNA

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 322))

Abstract

Genes that code for protein or RNA represent only a fraction of the entire genome. In most higher organisms, including plants and animals, the genes comprise less than 50% of the DNA pr cell [1]. The non-coding fraction of the genome consists of unique non-repetitive spacer sequences between genes and various types of repetitive DNA. The repetitive sequences can be interspersed (present in multiple copies spread throughout the genome), or present as tandem repeats (continous arrays of the repeat unit).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, W-H. and Graur, D. (1991) Fundamentals of molecular evolution. Sinauerassociates, Inc, Sunderland, Mass.

    Google Scholar 

  2. Nakamura, Y., Leppert, M., O’Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C,. Hoff, M., Kumlin, E. and White, R. (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–1622

    Article  ADS  Google Scholar 

  3. Jeffreys, A.J, Wilson, V.and Thein, S.L., (1985) Hypervariable ‘minisatellite’:regions in human DNA. Nature 314, 67–73

    Article  ADS  Google Scholar 

  4. Tautz, D., (1989) Hypervariable microsatellites revealed by in Vitro amplification of dinucleotide repeats within the cardiac muscle actin gene. Nucleic Acid Research 17, 6463–6471

    Article  Google Scholar 

  5. Hearne, C.M., Ghosh, S.and Todd, J.A. (1992) Microsatellites for linkage analysis of genetic traits. Trends in Genetics 8, 288–294

    Google Scholar 

  6. Neufeld, P.J. and Colman, N. (1990) When science takes the witness stand. Scientific American 262, 18–25

    Article  Google Scholar 

  7. Armour, J.A.L. and Jeffreys, A.J. (1992) Biology and applications of human minisatellite loci. Current Opinion in Genetics and Development 6, 850–856

    Article  Google Scholar 

  8. Wright, J.M. (1993) DNA fingerprinting of fishes. Biochemistry and molecular biology of fishes (Eds Hochachanhka and Mommsen) 2, 57–91

    Google Scholar 

  9. Burke, T., Rainey, W.E. and White, T.J. (1992) Molecular variation and ecological problems. Genes in ecology. (Eds. R. J. Berry, T.J. Crawfordland & G. M. Hewitt), Blackwell Scientific Publishers, London

    Google Scholar 

  10. Fangan, B.M., Stedje, B., Stabbetorp, O.E., Jensen, E.S. and Jakobsen, K.S. (1994)A general approach for PCR-amplification and sequencing of chloroplast DNA from crude vascular plant and algal tissue. BioTechniques 16,484–494

    Google Scholar 

  11. Jeffreys, A.J., Royle, N.J., Wilson, V. and Wong, Z., (1988) Spontanious mutation rates to new lenght alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332, 278–281

    Article  ADS  Google Scholar 

  12. Georges, M., Lathrop, M., Hubert, P., Marcotte, A., Schwere, A., Swillens, S., Vassart, G. and Hanset, R. (1990) On the use of DNA fingerprints for linkage studies in cattle. Genomics 6, 461–474

    Article  Google Scholar 

  13. Hoelzel, A.R. (1993) Evolution by DNA turnover in the control region of vertebrate mitochondrial DNA. Current Opinion in Genetics and Development 3, 891–895

    Article  Google Scholar 

  14. Saccone, C. 1994 The evolution of mitochondrial DNA. Current Opinion in Genetics and Development 4, 875–881

    Article  Google Scholar 

  15. Tautz, D. and Schlotterer, C. (1994) Simple sequences. Current Opinion and Genetics and Development 4, 832–837

    Article  Google Scholar 

  16. Stephan, W., and Cho, S (1994) Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136, 333–34117.

    Google Scholar 

  17. Zischler, H., Kammerbauer, C., Studer, R., Grzeschik, K-H., Epplen, J.T. (1992) Dissecting (CAG)5/(GTG)5 fingerprints into individual locus specific, hypervariable components. Genomics 13, 983–990

    Article  Google Scholar 

  18. Charlesworth, B., Sniegowski, P. and Stephan, W. (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220

    Article  ADS  Google Scholar 

  19. Kelly, R., Bulfield, G., Collick, A., Gibbs, M. and Jeffreys, A.J. (1989).Characterization of a highly unstable mouse minisatellite locus: evidence for somatic mutation during early development Genomics 5, 844–856.

    Article  Google Scholar 

  20. Gruenbaum, Y. (1991) EMBL accession number X60511

    Google Scholar 

  21. Gyllensten, U.F., Jakobsson, S., Temrin, H. and Wilson, A.C. (1989) Nucleotide sequence and genomic organization of bird minisatellites. Nuclelic Acids Research 17, 2203–2214

    Article  Google Scholar 

  22. Goodier, J.L., Davidson, W.S.(1994) Identification of minisatellite loci in thegenome of Atlantic salmon, EMBL accession number U11503

    Google Scholar 

  23. Jacobson, J.W., Guo, W. and Hughes, C.R. (1992) A Drosophila minisatellitecontains multiple Chi sequences. Insect Biochemistry and Molecular Biology 22,785–792

    Article  Google Scholar 

  24. Tourmente, S., Deragon, J.M., Lafleuriel, J., Tutois, S., Pelissier, T., Cuvillier, C., Espagnol, M.C. and Picard. G. (1994) Characterization of minisatellites in Arabidopsis thaliana with sequence similarity to the human minisatellite core sequence. Nucleic Acids Research 22, 3317–3321.

    Article  Google Scholar 

  25. Yu, Q., Colot, H.V., Kyriacou, C.P., Hall, J.C., and Rosbash, M. (1987) Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature 326, 765–769

    Article  ADS  Google Scholar 

  26. Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, A.S. and Christophe, D (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235, 683–684.

    Article  ADS  Google Scholar 

  27. Menzel, A., Lagoda, P.J.L. and Issinger, O.-G. (1990) Hypervariable individual-specific DNA band patterns revealed by a 22mer promoter-specific oligonucleotide probe containing an SP1 site. Nucleic Acids Research 18, 4287

    Article  Google Scholar 

  28. Armour, J.A.L, Vergnaud, G., Crosier, M., Jeffreys A.J. (1992) Isolation of human minisatellite loci detected by synthetic tandem repeat probes: direct comparison with cloned DNA fingerprinting probes. Human Molecular Genetics 1, 319–323

    Article  Google Scholar 

  29. Lynch, M. (1990). The similarity index and DNA fingerprinting. Molecular Biology & Evolution 7, 478–484

    Google Scholar 

  30. Gilbert, D.A., Lehman, N., O’Brien, S.J. and Wayne, R.K. (1990) Genetic fingerprinting reflects population differentiation in the Californian Channel Island fox. Nature 344, 764–767

    Article  ADS  Google Scholar 

  31. Reeve, H.K., Westneat, D.F., Noon, W.A., Sherman, P.W. and Aquadro, C.F. (1990) DNA “fingerprinting” reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proceedings of National Academy of Science USA. 87, 2496–2500.

    Article  ADS  Google Scholar 

  32. Wayne, R.K., Lehman, N., Girman, D., Gogan, P.J.P., Gilbert, D.A, Hansen, K., Peterson, R.O., Seal, U.S., Eisenhawer, A., Mech, L.D. and Krumenaker R.J. (1991) Conservation genetics of the endangered Isle Royal gray wolf. Conservation Biology 5, 41–51

    Article  Google Scholar 

  33. Ellegren, H., Hartman, G., Johansson, M. and Andersson, L. (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proceedings of Naional Academy of Science USA 90, 8150–8153.

    Article  ADS  Google Scholar 

  34. Bruford, M.W. and Wayne, R.K. (1993) Microsatellites and their application to population genetic studies. Current Opinion in genetics and Development 3, 939–943

    Article  Google Scholar 

  35. Schribner, K.T, Arntzen, J.W. and Burke, T. (1994) Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo using alloenzyme, single locus microsatellite, minisatellite and multilocus minisatellite data. Molecular Biology & Evolution 11, 737–748

    Google Scholar 

  36. Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R. and Cavalli-Sforza, L.L. (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457

    Article  ADS  Google Scholar 

  37. Refseth, U.H., Mjølnerød, I.B.and Jakobsen, K.S. (1994) Improved multilocus DNA fingerprinting pattern of Atlantic salmon (Salmo salar) using a M13 probe containing both tandem repeat regions. Molecular Marine Biology & Biotechnology 3, 347–354

    Google Scholar 

  38. Stacy, J.E., Refseth, U.H., Thoresen, M., Ims, R.A., Stenseth, N.C. and Jakobsen, K.S. (1994) Genetic variability among root voles (Microtus oeconomus) from different geographic regions: populations can be distinguished by DNA fingerprinting. Biological Journal of the Linnean Society 52, 273–286.

    Article  Google Scholar 

  39. Zeh, D.W., Zeh, J.A., Coffroth, M.A. and Bermingham, E. (1992) Population-specific DNA fingerprints in a neotropical pseudoscorpion (Cordylochernes scorpioides). Heredity 69, 201–208.

    Article  Google Scholar 

  40. Fu, Y-H., Kuhl, D.P.A., Pizzuth, M., Pieretti, M., Sutcliff, J.S., Richards, S., Verkerk, A.J., Holden, J.J., Fenwick, R.G., Warren, S.T. et al. (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of Sherman paradox. Cell 67, 1047–1058

    Article  Google Scholar 

  41. Chamberlaine, J.S., Gibbs, R.A., Ranier, J.E., Nguyen, P.N., Caskey, C.T. (1988) Deletion screening of Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Research 16, 11141

    Article  Google Scholar 

  42. Nevers, P. and Saedler, H. (1977) Transposable genetic elements as agents of gene instability and chromosomal rearrangement. Nature 268, 109–115

    Article  ADS  Google Scholar 

  43. Syvanen, M.(1984) The evolutionary implications of mobile genetic elements Annual Review in Genetics 18, 271–293

    Article  Google Scholar 

  44. Chandley, A.C. and Mitchell, A.R. (1988) Hypervariable minisatellite regions are site for crossing-over at meiosis in man. Cytogenetic and Cell Genetics 48, 152–155

    Article  Google Scholar 

  45. Collick, A. and Jeffreys, A.J. (1990) Detection of a novel minisatellite-specific DNA-binding protein. Nucleic Acids Research 18, 625–629

    Article  Google Scholar 

  46. Wahls, W.P., Swenson, G. and More, PD (1991) Two hypervariable minisatellite DNA binding proteins. Nucleic Acids Research 19, 3269–3274

    Article  Google Scholar 

  47. Doolittle, F.W. and Sapienza, C. (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603

    Article  ADS  Google Scholar 

  48. Orgel, L.E. and Crick, F.H.C (1980) Selfish DNA: The ultimate parasite. Nature 284, 604–607

    Article  ADS  Google Scholar 

  49. Schlötterer, C. and Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20, 211–215

    Article  Google Scholar 

  50. Strand, M., Prolla, T.A., Liskay, R.M. and Petes, T.D. (1993) Destabilizationof tracts of simple repetitive DNA in yeast by mutation affecting DNA mismatch repair. Nature 365, 274–276

    Article  ADS  Google Scholar 

  51. Lindahl, T. (1994) DNA repair: DNA surveillance defect in cancer cells. Current Biology 4, 241–251

    Article  Google Scholar 

  52. Davies, W., Høyheim, B., Chaput, B., Archibald, A.L. and Frelat, G. (1994)Characterization of microsatellites from flow-sorted porcine Chromosome 13. Mammalian Genome 5, 707–711

    Article  Google Scholar 

  53. Deka, R., Chakraborty, R.. and Farrel, R.E. (1991) A population genetic study of six VNTR loci in three ethnically defined population. Genomics 11, 83–92

    Article  Google Scholar 

  54. Jeffreys, A.J. (1994) Complex gene conversion events in germline mutation at human minisatellites. Nature Genetics 6, 136–145

    Article  Google Scholar 

  55. Smith, G.P. (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191, 528–535

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jakobsen, K.S., Stacy, J.E., Refseth, U.H., Thoresen, M. (1996). Evolutionary Mechanisms Involved in the Formation of Tandem Repetitive Non-Coding DNA. In: Riste, T., Sherrington, D. (eds) Physics of Biomaterials: Fluctuations, Selfassembly and Evolution. NATO ASI Series, vol 322. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1722-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1722-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7271-7

  • Online ISBN: 978-94-009-1722-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics