Skip to main content

Monitoring of a Gus Transformed Strain of Trichoderma Harzianum in Soil and Rhizosphere

  • Chapter
Monitoring Antagonistic Fungi Deliberately Released into the Environment

Part of the book series: Developments in Plant Pathology ((DIPP,volume 8))

Abstract

Recently molecular technology has enabled reporter and marker genes to be integrated in the fungal genome. The resulting transformants can then be monitored after introduction into natural environments. This paper summarizes the suitability of using a GUS transformant for monitoring the presence, the population development, and the activity of a specific strain of T. harzianum deliberately released into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-El Moity T.H., Papavizas, G.C., and Shatla, M.N. (1982) Introduction of new isolates of Trichoderma harzianum tolerant to fungicides and their experimental use for control of white rot of onion. Phytopathology 72:396–400.

    Article  Google Scholar 

  2. Ahmad, J.S., and Baker, R. (1987) Competetive saprophytic ability and cellulytic activity of rhizosphere competent mutants of Trichoderma harzianum. Phytopathology 77:358–362.

    Article  CAS  Google Scholar 

  3. Brock, T.D. (1987) The study of microorganisms in situ: progress and problems. Pages 1–17 in: Ecology of Microbial Communities. M. Fletcher, T.R.G. Gray and J.G. Jones, eds. Symp. Soc. Gen. Microbiol. Vol. 41.

    Google Scholar 

  4. Chet, I. (1987) Trichoderma-application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. Pages 137–160 in: Innovative Approaches to Plant Disease Control. I. Chet, ed. Wiley, New York.

    Google Scholar 

  5. Couteaudier, Y., Daboussi, M.-J., Eparvier, A., Langin, T., and Orcival, J. (1993) The GUS gene fusion system (Escherichia coli ß-D-glucuronidase gene), a useful tool in studies of root colonization by Fusarium oxysporum. Appl. Environ. Microbiol. 59:1767–1773.

    PubMed  CAS  Google Scholar 

  6. Davet, P. 1979. Technique pour l’analyse des populations de Trichoderma et de Gliocladium virens dans le sol. Ann. Phytopathol. 11:529–533.

    Google Scholar 

  7. Elad, Y., Chet, I., and Henis, Y. (1981) A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9:59–67.

    Article  Google Scholar 

  8. Eparvier, A., and Alabouvette, C. (1994) Competition between pathogenic and non pathogenic Fusarium oxysporum for root colonization. Biocontrol Sci. Technol. 4:35–47.

    Article  Google Scholar 

  9. Gallagher, S.R. (1992) GUS protocols: Using the GUS gene as a reporter of gene expression. Academic Press, San Diego, 221 pp.

    Google Scholar 

  10. Green, H., and Jensen, D.F. (1995) A tool for monitoring Trichoderma harzianum: II. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology, 85:1436–1440.

    Article  CAS  Google Scholar 

  11. Jefferson, R. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405.

    Article  CAS  Google Scholar 

  12. Jensen, D.F., and Wolffhechel, H. (1995) The use of fungi, particularly Trichoderma spp. and Gliocladium spp., to control root rot and damping-off diseases. Pages 177–189 in: Biocontrol Agents: Benefits and Risks. H. Hokkanen, and J.M. Lynch eds. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  13. Liljeroth, E., Jansson, H.-B., and Schäfer, W. (1994) Transformation of Bipolaris sorokiniana with the GUS-gene and use for studying fungal colonization of barley roots. Phytopathology 84:1484–89.

    Google Scholar 

  14. Oliver, R.P., Farman, M.L., Jones, J.D.G., and Hammond-Kosack, K.E. (1993) Use of fungal transformants expressing ß-glucuronidase activity to detect infection and measure hyphal biomass in infected plant tissues. Mol. Plant-Microbe Interact. 6:521–525.

    Article  CAS  Google Scholar 

  15. Papavizas, G.C. (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu. Rev. Phytopathol. 23:23–54.

    Article  Google Scholar 

  16. Papavizas, G.C, Lewis, J.A., and Abd-El Moity, T.H. (1982) Evaluation of new biotypes of Trichoderma harzianum for tolerance to benomyl and enhanced biocontrol capabilities. Phytopathology 72:126–132.

    Article  CAS  Google Scholar 

  17. Papavizas, G.C., and Lumsden, R.D. (1982) Improved medium for isolation of Trichoderma spp. from soil. Plant Dis. 66:1019–1020.

    Article  Google Scholar 

  18. Parkinson, D., and Coleman, D.C. (1991) Methods for assessing soil microbial populations, activity and biomass. Agric. Ecosyst. Environ. 34:3–33.

    Article  Google Scholar 

  19. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular cloning. A laboratory manual. Second edition. Cold Spring Harbour Laboratory Press, Cold Spring Harbour.

    Google Scholar 

  20. Söderström, B.E. (1977) Vital staining of tungi in pure cultures and in soil with fluorescein diacetate. Soil Biol. Biochem. 9:59–63.

    Article  Google Scholar 

  21. Thrane, C, Lübeck, M., Green, H., Defégu, Y., Allerup, S., Thrane, U., and Jensen, D.F. (1995) A tool for monitoring Trichoderma harzianum: I. Transformation with the GUS gene by protoplast technology. Phytopathology, 85:1428–1435.

    Article  CAS  Google Scholar 

  22. Torres, M., Viladrich, R., Sanchis, V., and Canela, R. (1992) Influenxe of age on ergosterol content in mycelium of Aspergillus ochraceus. Lett. Appl. Microbiol. 15:20–22.

    Article  CAS  Google Scholar 

  23. Warcup, J.H. (1955) On the origin of colonies of fungi developing on soil dilution plates. Trans. Br. Mycol. Soc. 38:298–262.

    Article  Google Scholar 

  24. Wilson, K.J., Giller, K.E., and Jefferson, R.A. (1991) ß-glucuronidase (GUS) operon fusion as a tool for studying plant-microbe interactions. Pages 226–229 in: Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. 1. H. Hennecke, and D.P.S. Verma, eds. Kluwer Academic Publishers, the Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Green, H., Jensen, D.F. (1996). Monitoring of a Gus Transformed Strain of Trichoderma Harzianum in Soil and Rhizosphere. In: Jensen, D.F., Jansson, HB., Tronsmo, A. (eds) Monitoring Antagonistic Fungi Deliberately Released into the Environment. Developments in Plant Pathology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1698-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1698-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7260-1

  • Online ISBN: 978-94-009-1698-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics