Skip to main content

Photonic Band Gaps in Complex-Unit Systems and Quasi One-Dimensional Waveguides

  • Chapter
Photonic Band Gap Materials

Part of the book series: NATO ASI Series ((NSSE,volume 315))

  • 539 Accesses

Abstract

The existence of a photonic band gap (PBG), in materials where the refractive index varies periodically, gives rise to many interesting and potentially useful properties, including the localization of light[1], the inhibition of radiation [2], etc., see Ref. 3 and references cited therein. These properties become more pronounced when the photonic gap is made large. Accordingly, the search for crystals with large PBGs has been extensive[1–4]. However, to our knowledge this search has had a limited success as it has identified structures with significant PBGs described by a gap-to-midgap frequency ratio of only about 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. John, S. (1991) Localization of light, Physics Today, May, 32–40

    Google Scholar 

  2. Meade, D. R., Bromer, D. K., Rappe, M. A., and Joannopoulos, D. J. Electromagnetic Bloch waves at the surface of a photonic crystal, Phys. Rev. B 44, 10961–10969–10972 (1991).

    Article  ADS  Google Scholar 

  3. Yablonovitch, E. (1987) Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062.

    Article  ADS  Google Scholar 

  4. C. M. Soukoulis (ed.) (1993) Photonic Band Structure and Localization, Plenum, New York; J. Opt. Soc. Am. B. 10, issue 2.

    Google Scholar 

  5. Ho, K.M., Chan, C.T. and Soukoulis, C.M. (1990) Existence of a photonic band gap in periodic dielectric structures, Phys. Rev. Lett. 65, 3152–3160

    Article  ADS  Google Scholar 

  6. Villeneuve, P.R. and Piche, M. (1992) Photonic band gaps in two-dimensional square and hexagonal lattices, Phys. Rev. B 46,4969–4972

    Article  ADS  Google Scholar 

  7. Ozbay, E.,Michel, E., Tuttle, G., Biswas, R., Ho, K. M., Bostak, J., Bloom, D. M., (1994) Double etch geometry for millimeter-wave photonic band gap crystals, Appl. Phys. Lett. 65, 1617–1619.

    Article  ADS  Google Scholar 

  8. Vasilopoulos, P., Peeters, F.M., and Aitelhabti, D. (1990) Quantum tunability of superlattice minbands, Phys. Rev. B 41, 10021–10027.

    Article  ADS  Google Scholar 

  9. Akis, R., Vasilopoulos, P., and Debray, P. (1995) Ballistic transport in electron stub tuners: shape and temperature dependence, tuning of the conductance output and resonant tunnelling, Phys. Rev. B 52 in press.

    Google Scholar 

  10. Wu, H., Sprung, D. W. L., Martorell, J. and Klarsfeld, S. (1991) Quantum wire with periodic serial structure, Phys. Rev. B 44, 6351–6360.

    Article  ADS  Google Scholar 

  11. Sols, F., Macucci, M., Ravaioli, U. and Hess, K. (1989) Theory for a quantum modulated transistor, J. Appl. Phys. 66, 3892–3906.

    Article  ADS  Google Scholar 

  12. Sigalas, M., Soukoulis, C. M., Economou, E. N., Chan, C. T. and Ho, K. M. (1993) Photonic band gaps and defects in two dimensions: Studies of the the transmission coefficient, Phys. Rev. B 48, 14121–14126.

    Article  ADS  Google Scholar 

  13. McCall, S. L. and Platzman, P. M. (1991) Microwave propagation in two-dimensional dielectric lattices, Phys. Rev. Lett. 67, 2017–2020.

    Article  ADS  Google Scholar 

  14. Plihal, M. and Maradudin, A. A. (1991) Photonic band structure of two-dimensional systems: The triangular lattice, Phys. Rev. B 44, 8565–85770.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Akis, R., Vasilopoulos, P., Sezikeye, F. (1996). Photonic Band Gaps in Complex-Unit Systems and Quasi One-Dimensional Waveguides. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics