Skip to main content

Microcavities in Channel Waveguides

  • Chapter
Photonic Band Gap Materials

Part of the book series: NATO ASI Series ((NSSE,volume 315))

Abstract

We introduce and analyse a new type of resonant microcavity consisting of a channel waveguide and a one-dimensional photonic crystal. A band gap for the guided modes is opened and a state is created within the gap by adding a single defect in the periodic system. An analysis of the eigenstates in the system shows that a strong field confinement of the defect state can be achieved with a modal volume less than half of a cubic half-wavelength. The coupling efficiency to this mode will be shown to exceed 80%. As a proof of concept, we present a feasibility study for the fabrication of these microcavities in an air-bridge configuration with micron-sized features using semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Yamamoto, and R. E. Slusher, Physics Today, June, 66 (1993).

    Google Scholar 

  2. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).

    Article  ADS  Google Scholar 

  3. P. R. Villeneuve and M. Piché, Prog. Quantum Electron. 18, 152 (1994).

    Article  Google Scholar 

  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, New York, 1995).

    MATH  Google Scholar 

  5. R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. B 48, 8434 (1993).

    Article  ADS  Google Scholar 

  6. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1996).

    ADS  Google Scholar 

  7. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, New York, 1985).

    Google Scholar 

  8. P. R. Villeneuve, S. Fan, J. C. Chen, and J. D. Joannopoulos (unpublished).

    Google Scholar 

  9. A. Yariv, Optical Electronics (Saunders, Philadelphia, 1991).

    Google Scholar 

  10. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, Kuo-Yi Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, Appl. Phys. Lett. 67, 167 (1995).

    Article  ADS  Google Scholar 

  11. J. S. Foresi, L. C. Kimerling, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos (unpublished).

    Google Scholar 

  12. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Villeneuve, P.R. et al. (1996). Microcavities in Channel Waveguides. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics