Skip to main content

Microwave Applications of Photonic Crystals

  • Chapter
Book cover Photonic Band Gap Materials

Part of the book series: NATO ASI Series ((NSSE,volume 315))

Abstract

This paper reviews three applications we have investigated using conventional (i.e., all dielectric) photonic crystals at frequencies up to about 30 GHz: (1) microwave mirrors, (2) substrates for planar antennas, and (3) photonic-crystal heterostructures. In each case, an important characteristic of the photonic crystal is that the reflection at frequencies in the stop band is distributed over at least one lattice constant in depth. Thus, the heat generated by residual dielectric absorption is distributed over a much larger volume than the heat generated by surface losses in a metal mirror, enabling a lower operating temperature. An additional characteristic of the photonic crystal, essential to the antenna application, is that its stop band is three-dimensional and thus rejects the majority of power radiated by an antenna mounted on its surface. This makes the planar antenna much more efficient than the same antenna placed on a homogeneous substrate made from the same dielectric material as the photonic crystal. A key factor in the ultimate practicality of these applications is the development of new types of photonic crystals that are superior structurally to conventional crystals or that display enhanced stop-band characteristics. To widen the stop band, we have studied a photonic-crystal heterostructure consisting of a stack of monoperiodic sections having different lattice constants. The resulting structure is shown to have a stop band of nearly one octave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  2. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid. State Commun. 89, 413 (1994).

    Article  ADS  Google Scholar 

  3. H. S. Sözüer and J. P. Dowling, J. Mod. Opt. 41, 231 (1994).

    Article  ADS  Google Scholar 

  4. E. Özbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 64, 2059 (1994).

    Article  ADS  Google Scholar 

  5. E. R. Brown, K. Agi, C. D. Dill III, C. D. Parker, and K. J. Malloy, Microw. Opt. Tech. Lett. 7, 777 (1994).

    Article  Google Scholar 

  6. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett. 61, 495 (1992).

    Article  ADS  Google Scholar 

  7. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    Google Scholar 

  8. K. H. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  9. M. N. Afsar and K. J. Button, Proc. IEEE 73, 131 (1985).

    Article  Google Scholar 

  10. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, “Integrated-Circuit Antennas,” in Infrared and Millimeter Waves, Vol. 10 (Academic, Orlando, 1983), p. 1.

    Google Scholar 

  11. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B 44, 10961 (1991).

    Article  ADS  Google Scholar 

  12. E. R. Brown, C. D. Parker, and E. Yablonovitch, J. Opt. Soc. Am. B 10, 404 (1993).

    Article  ADS  Google Scholar 

  13. E. R. Brown, C. D. Parker, and O. B. McMahon, Appl. Phys. Lett 64, 3345 (1994).

    Article  ADS  Google Scholar 

  14. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  15. S. Sze, Physics of Semiconductor Devices, 2nd Ed. (Wiley, New York, 1981), p. 850.

    Google Scholar 

  16. K. Agi, E. R. Brown, O. B. McMahon, C. Dill III, and K. J. Malloy, Electron. Lett. 30, 2166 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brown, E.R., McMahon, O.B., Parker, C.D., Dill, C., Agi, K., Malloy, K.J. (1996). Microwave Applications of Photonic Crystals. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics