Skip to main content

Sample size in the monitoring of benthic macrofauna in the profundal of lakes: evaluation of the precision of estimates

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 113))

Abstract

We discuss here the influence of sample size (number of replicates) on the accuracy and precision of the results when sampling profundal benthos with an Ekman grab according to the Finnish standard, SFS 5076, which is equivalent to the Swedish and Norwegian standards. The aim was to find criteria for choosing a sample size which would avoid any powerful influence of chance on the results without entailing an unreasonable amount of work for monitoring purposes.

Lake Haukivesi (area 620 km2, total phosphorus 13 µg 1−1 and colour 35 Pt mg 1−1), Lake Paasivesi (116 km2, 5 µg 1−1 and 35 Pt mg 1−1) and Lake Puruvesi (322 km2, 4 µg 1−1 and 5 Pt mg 1−1) were sampled randomly in June and October 1991. 25 Replicate samples were taken on each occasion from the deep profundal area of each lake, defined here as 60–100% of the maximum depth. The sedimentation areas studied were fairly homogeneous, since the animal communities were not markedly affected by the variations in depth. Distribution estimates for the statistics studied, such as number of individuals, expected number of species, diversity and benthic quality indices, were calculated for a large set of random samples taken from the empirical data by computer (bootstrap sampling). The sample variance, s 2, correlated with the mean animal density, m (ind. m−2), according to the equation s 2 = 31.77 m 1.247. The sample size required to achieve the desired precision in mean animal density (D, expressed as the ratio standard error/mean) can thus be estimated as n = 31.77 m−0.753 D −2. The number of replicate samples needed to achieve a standard error of 20% of the mean density was 10 in Lake Haukivesi, seven in Lake Paasivesi and 11 in Lake Puruvesi. The accuracy and precision of the estimated number of species, Shannon’s diversity and Benthic Quality Index improved markedly as the sample size was increased to 10 replicates. As a compromise between work load and statistical reliability, a figure of 10 replicate Ekman samples is proposed here for the monitoring of profundal benthos. The proposed sample size usually produces individual numbers which are high enough for practical purposes, probably at least 100 individuals, which is recommended as a minimum in the standard. The lower number of replicate samples recommended in recent Finnish handbook, 3–5, usually produces inadequate data, and this may detract from the comparability of the results and leave the changes in profundal communities undetected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. E. & E. D. McCune, 1979. Application of generalized jack-knife to Shannon’s measure of information used as an index of diversity. In: J. F. Grassle, G R Patil, W. Smith & C. Taillie (eds), Ecological diversity in theory and practice. International Co-operative Publishing House, Fairland, Maryland: 117–131.

    Google Scholar 

  • Aschan, M., 1988. Soft bottom macrobenthos in a Baltic archipelago. Ann. zool. fenn. 25: 153–164.

    Google Scholar 

  • Brinkhurst, R. O., 1974. The benthos of the lakes. Macmillan Press Ltd., London, Basingstoke, 190 pp.

    Google Scholar 

  • Brundin, L., 1949. Chironomiden und andere Bodentiere der südschwedishen Urgebirgsseen. Rep. Inst. Freshwater Res. Drotmingholm 30: 1–914.

    Google Scholar 

  • Brundin, L., 1956. Die Bodenfaunistischen Seetypen und ihre Anwendbarkeit auf die Stidhalbkugel. Zugleich eine Theorie der produktions-biologischen Bedeutung der glazialer Erosion. Rep. Inst. Freshwat. Res. Drottningholm 37: 186–235.

    Google Scholar 

  • Chanton S. P. & J. W. Chadwick, 1988. Variability in benthic hivertebrate density estimates from stream samples. J. Freshwat. Ecol. 4: 291–297.

    Article  Google Scholar 

  • Downing, J. A., 1979. Aggregation, transformation, and the design of benthos sampling programs. J. Fish. Res. Bd Can. 36: 1454–1463.

    Article  Google Scholar 

  • Downing, J. A., 1980. Corrections to recent publications. J. Fish. aquat. Sci. 37: 1333.

    Article  Google Scholar 

  • Downing, J. A., 1984. Sampling the benthos of standing waters. In: J. A. Downing & F. H. Rigler (eds), A manual of methods for the assessment of secondary production in fresh waters. IBP handbook 17: 87–130.

    Google Scholar 

  • Downing, J. A., 1986. Spatial heterogeneity: evolved behaviour or mathematical artefact. Nature 323: 255–257.

    Article  Google Scholar 

  • Downing, J. A., 1989. Precision of the mean and the design of benthos sampling programmes: caution revised. Mar. Biol. 103: 231–234.

    Google Scholar 

  • Downing, J. A., 1991. Biological heterogeneity in aquatic ecosystems. In: J. Kolasa & S. T. A. Pickett (eds), Ecological heterogeneity. Springer-Verlag, New York, NY: 160–180.

    Google Scholar 

  • Downing, J. A. & M. R. Anderson, 1985. Estimating the standing biomass of aquatic macrophytes. Can. J. Fish. aquat. Sci. 42: 1860–1869.

    Article  Google Scholar 

  • Downing, J. A. & H. Cyr, 1984. Quantitative estimation of epiphytic invertebrate populations. Can. J. Fish. aquat. Sci. 42: 1570–1579.

    Article  Google Scholar 

  • Downing, J. A. & W. L. Downing, 1992. Spatial aggregation, precision, and power in surveys of freshwater mussel populations. Can. J. Fish. aquat. Sci. 49: 985–991.

    Article  Google Scholar 

  • Efron, B., 1982. The jackknife, the bootstrap and other resampling plans. Monogr. no. 38. Soc. for industrial and applied Mathematics, Philadelphia, Pennsylvania, 92 pp.

    Google Scholar 

  • Elliott, J. M., 1977. Some methods for the statistical analysis of samples of benthic invertebrates. Freshw. Biol. Assoc. sci. Publ. 25: 1–156.

    Google Scholar 

  • Green, R. H., 1979. Sampling design and statistical methods for environmental biologist. Wiley, New York, 257 pp.

    Google Scholar 

  • Heck, K. L., G. Van Belle & D. Simberloff, 1975. Explicit calculation of the rarefaction diversity measurements and the determination of sufficient sample size. Ecology 56: 1459–1461.

    Article  Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence anal- ysis, an improved ordination technique. Vegetatio 42: 47–58.

    Article  Google Scholar 

  • Hurlbert, S. H., 1971. The non-concept of species diversity: A critique and alternative parametres. Ecology 52: 577–586.

    Article  Google Scholar 

  • Johnson, R. K., T. Wiederholm & D. M. Rosenberg, 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: D. M. Rosenberg & V. H. Resh (eds), Frehwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, London: 40–158.

    Google Scholar 

  • Kansanen, P. H., L. Paasivirta & T. Väyrynen, 1990. Ordination analysis and bioindices based on zoobenthos communities used to assess pollution of a lake in southern Finland. Hydrobiologia 202: 153–170.

    Article  CAS  Google Scholar 

  • Keskitalo, J. & K. Salonen (eds), 1994. Manual for integrated monitoring. Subprogramme Hydrobiology of lakes. Publ. Water and Environment Administration, Series B 16, 41 pp.

    Google Scholar 

  • Magurran, A. E., 1988. Ecological diversity and its measurement. Croom Helm, London, 179 pp.

    Google Scholar 

  • Mäkelä, A., S. Antikainen, I. Mäkinen, J. Kivinen & T. Leppänen, 1992. Vesitutkimusten näytteenottomenetelmät. (Manual for sampling methods in limnological monitoring, in Finnish). Publications of the Water and Environment Administration, Series B 10: 1–86.

    Google Scholar 

  • Manly, B. F. J., 1990. Randomization and Monte Carlo methods in biology. Chapman & Hall, London, New York, 281 pp.

    Google Scholar 

  • Meire, P. M., J. P. J. Dereu, J. van der Meer & D. W. G. Develter, 1989. Aggregation of littoral macrobenthic species: some theoretical and practical considerations. Hydrobiologia 175: 137–148.

    Article  Google Scholar 

  • Meriläinen, J. J. & V. Hamina, 1993. Recent environmental history of a large, originally oligotrophic lake in Finland: a palaeolimnological study of chironomid remains. J. Paleolimnol. 9: 129–140.

    Article  Google Scholar 

  • Morn, A., 1985. Variability of density estimates and the optimization of sampling programs for stream benthos. Can. J. Fish. aquat. Sci. 42: 1530–1543.

    Article  Google Scholar 

  • Norris, R. H. & A. Georges, 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In: D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, London: 234–286.

    Google Scholar 

  • Pielou, E. C., 1977. Mathematical ecology. Wiley, New York, 384 pp.

    Google Scholar 

  • Potvin, C. & D. A. Roff, 1993. Distribution free and robust statistical methods: Viable alternative to parametric statistics? Ecology 74: 1617–1628.

    Article  Google Scholar 

  • Resh V. H., 1979. Sampling variability and life history features: basic considerations in the design of aquatic insect studies. J. Fish. Res. Bd Can. 36: 290–311.

    Article  Google Scholar 

  • Resh, V. H. & J. K. Jackson, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, London: 195–233.

    Google Scholar 

  • Resh, V. H. & E. P. McElravy, 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In: D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, London: 159–194.

    Google Scholar 

  • Sdrldkä, J., 1979. The zoobenthos of Lake Päijänne and its relations to some environmental factors. Acta zool. fenn. 160: 1–46.

    Google Scholar 

  • Shannon, C. E., 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379–423, 623–656.

    Google Scholar 

  • Simberloff, D., 1978. Use of rarefaction and related methods in ecology. In: K. L. Dickson, J. Cairns Jr. & R. J. Livingstone (eds), Biological data in water pollution assessment: Quantitative and statistical analyses, ASTM STP 652, Burtonsville: 150–165

    Chapter  Google Scholar 

  • Simberloff, D., 1979. Rarefaction as a distribution-free method of expressing and estimating diversity. In: J. F. Grassle, G. P. Patil, W. Smith & C. Taillie (eds), Ecological diversity in theory and practice. International Co-operative Publishing House, Fairland: 159–176.

    Google Scholar 

  • Simpson, E. H., 1949. Measurements of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Suomen standardoimisliitto, 1989. Vesitutkimukset. Pohjaeläinnäytteenotto Ekman-noutimella pehmeiltä pohjilta. Standard SFS 5076. [Sampling of the bottom fauna on soft bottoms with an Ekman grab. In Finnish.]

    Google Scholar 

  • Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.

    Google Scholar 

  • Taylor, L. R., 1961. Aggregation, variance, and the mean. Nature (Lond.) 189: 732–735.

    Article  Google Scholar 

  • Taylor, W. D., 1980. Comment on ‘Aggregation, transformation, and the design of benthos sampling programs’. J. Fish. Res. Bd Can. 37: 1328–1329.

    Google Scholar 

  • Vézina, A. F., 1988. Sampling variance and the design of quantitative surveys of marine benthos. Mar. Biol. 97: 151–155.

    Article  Google Scholar 

  • Wiederholm, T., 1980. Use of benthos in lake monitoring. J. Wat. Pollut. Cont. Fed. 52: 537–543.

    CAS  Google Scholar 

  • Zahl, S., 1977. Jackknifing an index of diversity. Ecology 58: 907–913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Veijola, H., Meriläinen, J.J., Marttila, V. (1996). Sample size in the monitoring of benthic macrofauna in the profundal of lakes: evaluation of the precision of estimates. In: Simola, H., Viljanen, M., Slepukhina, T., Murthy, R. (eds) The First International Lake Ladoga Symposium. Developments in Hydrobiology, vol 113. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1655-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1655-5_46

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7240-3

  • Online ISBN: 978-94-009-1655-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics