Skip to main content

Advanced Rechargeable Batteries for Different Widespread Applications

  • Chapter
  • 424 Accesses

Part of the book series: NATO ASI Series ((ASHT,volume 6))

Abstract

The present workshop is dedicated to “new promising electrochemical systems for rechargeable batteries”. Throughout the 19-th and 20-th centuries a great amount of electrochemical systems for rechargeable batteries have been described in literature. But only few of these systems survived and are being used in industry [1]. Up to the 1950-ies only three types of rechargeable batteries were produced on a large scale (the so-called conventional rechargeable batteries):

  • lead-acid batteries Pb02/H2S04/Pb,

  • alkaline nickel-cadmium batteries NiOOH/KOH/Cd,

  • alkaline nickel-iron batteries NiOOH/KOH/Fe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagotzky, V.S. and Skundin, A.M. (1980) Chemical Power Sources, Academic Press, London, New York, etc.

    Google Scholar 

  2. Döring, H., Ciasen H., Zweynert M., Garche J., and Jörissen L. (1995) Materials for bipolar lead-acid-batteries, These Proceedings, pp. 3–13.

    Google Scholar 

  3. Haschka, F., Benczur-Ürmössy, G., and Wartman, W. (1991) Ni-Cd traction batteries in FNC Fiber Technology, in Power Sources 13, International Power Sources Committee, Crowborough, pp. 165–183.

    Google Scholar 

  4. Johnson, B.A., Ferro, R.E., Swain, G.M., and Tatarchuk, B.T. (1994) High surface area, low-weight composite fiber electrodes, J.Power Sources 47, 251–259.

    Article  CAS  Google Scholar 

  5. Shukla, A.K., Ravikumar, M.K., and Balasubramanian, T.S. (1994) Nickel-iron batteries, J.Power Sources 51, 21–36.

    Article  Google Scholar 

  6. Birge, J.D., Brown, J.T., Feduska, W., Hardman C.C., Pollack W., Rosey, R. and Seidel, J. (1977) Performance characteristics for a new iron-nickel cell and battery for electric vehicles, in D.H.Collins (ed.), Power Sources 6, Academic Press, London, New York, etc., pp. 111–128.

    Google Scholar 

  7. Patil, P.G., Walsh, W.J.,and Miller, J.E. (1986) World-wide nickel iron development for EV applications, 8th International Electric Vehicle Symposium, Washington, DC, pp. 48–52.

    Google Scholar 

  8. Furakawa, N. (1994) Development and commercialization of nickel-metal hydride secondary batteries, J.Power Sources 51, 45–59.

    Article  Google Scholar 

  9. McBreen, J. (1994) Nickel-zinc batteries, J.Power Sources 51,37–44.

    Article  CAS  Google Scholar 

  10. McLarnon, F.R. and Cairns, E.J. (1991) The secondary alkaline zinc electrode, J.Electrochem. Soc. 138, 645–653.

    Article  CAS  Google Scholar 

  11. Adler, T.C., McLarnon, F.R., and Cairns, E.J. (1993) Low-zinc-solubility electrolytes for use in zinc/nickel oxide cells, J.Electrochem.Soc. 140, 289–294.

    Article  CAS  Google Scholar 

  12. Kordesch, K. and Weissenbacher, M. (1994) Rechargeable alkaline manganese dioxide/zinc batteries, J.Power Sources 51, 61–78.

    Article  CAS  Google Scholar 

  13. Halpert, G., Surampudi, S., Shen, D., Huang, C.-K., Narayanan, S., Vamos, E., and Perrone, D. (1994) Status of the development of rechargeable lithium cells, J.Power Sources 47, 287–294.

    Article  CAS  Google Scholar 

  14. Fauteux, D. and Koksbang, R. (1993) Rechargeable lithium battery anodes: alternatives to metallic lithium, J.Appl.Electrochem. 23, 1–10.

    Article  CAS  Google Scholar 

  15. Guyomard, D. and Tarascon, J.M. (1992) Lithium metal-free rechargeable LiMn2O4/carbon cells: their understanding and optimization, J.Electrochem.Soc. 139, 937–948.

    Article  CAS  Google Scholar 

  16. Megahed, S. and Scrosati, B. (1994) Lithium-ion rechargeable batteries, J.Power Sources 51, 79–194.

    Article  CAS  Google Scholar 

  17. Gauthier, M., Bélanger, A., Bouchard, P., Kapfer, B., Ricard, S., Vassort, G., Armand, M., Sanchez, J.Y., and Krause, L. (1995) Large lithium polymer battery development. The immobile solvent concept, J.Power Sources 54, 163–169.

    Article  CAS  Google Scholar 

  18. Beck, F. (1995) Design and materials for metall-free rechargeable batteries, These Proceedings, pp. 393–417

    Google Scholar 

  19. Genies, E. (1995) Polyaniline as an active material for rechargeable batteries, These Proceedings, pp. 305–306.

    Google Scholar 

  20. Oyama, N. (1995) Dimercaptan-polyaniline/lithium rechargeable battery with high energy density, These Proceedings, pp. 111–116.

    Google Scholar 

  21. Budevski, E., Staikov, G., and Aladjov, B. (1993) The sodium-sulfur battery-problems and alternative, 44th Meet.Intem.Soc.Electrochemistry, Berlin, Ext. Abstr. 0.III.7.2., p. 413.

    Google Scholar 

  22. Sudworth, J.L. (1994) Zebra batteries, J.Power Sources 51,105–114.

    Article  CAS  Google Scholar 

  23. Henriksen, G.L. and Vissers, D.R. (1994) Lithium-aluminum/iron sulfide batteries, J.Power Sources 51, 125–128.

    Article  Google Scholar 

  24. Singh, P. and Jonshagen, B. (1991) Zinc-bromine battery for energy storage, J.Power Sources 35, 405–410.

    Article  CAS  Google Scholar 

  25. Skyllas-Kazacos, M., Kasherman, D., Hong, D.R., and Kazacos M. (1991) Characteristics and performance of 1 kW UNSW vanadium redox battery, J.Power Sources 35, 399–404.

    Article  CAS  Google Scholar 

  26. Giner, J. (1995) Fuel Cell systems as rechargeable batteries, These Proceedings, pp. 215–232.

    Google Scholar 

  27. Rose, M.F., Johnson, C., Owens, T., and Stephens, B. (1994) Limiting factors for carbon-based chemical DL capacitors, J.Power Sources 47, 303–312.

    Article  CAS  Google Scholar 

  28. Zherg, J.P., and Jow, T.R. (1995) A new charge storage mechanism for electrochemical capacitors, J.Electrochem.Soc. 142, L6-L8.

    Article  Google Scholar 

  29. Hambitzer, G., Dreher, J., Dünger, J., and Hefer, B. (1995) Rechargeable lithium battery with inorganic electrolyte, These Proceedings, pp. 117–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bagotzky, V.S. (1996). Advanced Rechargeable Batteries for Different Widespread Applications. In: Barsukov, V., Beck, F. (eds) New Promising Electrochemical Systems for Rechargeable Batteries. NATO ASI Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1643-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1643-2_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7235-9

  • Online ISBN: 978-94-009-1643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics