Skip to main content

Electrochemical Investigation of Hydrogen Evolution and Absorption Phenomena in Nickel Based Electrodes

  • Chapter
New Promising Electrochemical Systems for Rechargeable Batteries

Part of the book series: NATO ASI Series ((ASHT,volume 6))

Abstract

Due to its potential for industrial applications, hydrogen absorption in metals has attracted continuous interest. Understanding the hydrogen chemistry in metals is crucial due to the significance of hydrogen-metal interactions in important industrial and technical applications such as catalysis, H-fuel containment, corrosion and embrittlement of metals and rechargeable metal hydride batteries [1–2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, A.F. and Maeland, A.J. (1978) Hydrides for energy storage, Pergamon Press, New York.

    Google Scholar 

  2. David Linden (ed.) (1995) Handbook of batteries, McGRAW-HILL, Inc.

    Google Scholar 

  3. Sakai, T., Muta, M., Miyamura, H., Kuriyama, N. and Ishikawa, H. (1991) Nickel-metal hydride batteries using rare-earth based hydrogen storage alloys, Proceedings of the symposium on Hydrogen Storage Materials, Batteries, and Electrochemistry, 180th Meeting of The Electrochemical Society, Phoenix, Arizona, Oct. 13–17, 1991.

    Google Scholar 

  4. Iwakura, C. and Matsuoka, M. (1991) Application of hydrogen storage alloys to battery-related fields: nickel-hydrogen batteries, Progress in Batteries & Battery Materials 10 81–114.

    CAS  Google Scholar 

  5. Anani, A., Visintin, A., Petrov, K., Srinivasan, S., Reilly, J.J., Johnson, J.R., Schwarz, R.B. and Desch, P.B. (1994) Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries, Journal of Power Sources 47 261–275.

    Article  CAS  Google Scholar 

  6. Jacsic

    Google Scholar 

  7. Chen, L. and Lasia, A. (1993) Ni-Al powder electrocatalyst for hydrogen evolution, J. Electrochem. Soc. 140 2464–2473.

    Article  CAS  Google Scholar 

  8. Notten, P.H.L. and Hokkeling, P. (1991) Double-phase hydride forming compounds: a new class of highly electrocatalytic materials, J. Electrochem. Soc. 138 1877–1885.

    Article  CAS  Google Scholar 

  9. Wendt, H. and Plzak, V. (1990) Electrode kinetics and electrocatalysis of hydrogen and oxygen electrode reactions, in H. Wendt (ed.), Electrochemical Hydrogen Technologies, Elsevier, Amsterdam-Oxford-New york-Tokyo, pp. 15–61.

    Google Scholar 

  10. Jung, M. and Kroeger, H.H. (1968) Hydrogen storing electrode and process for its manufacture, US Patent No. 3,409,474.

    Google Scholar 

  11. Switendick, A.C. (1972) Electronic energy bands of metal hydrides — palladium and nickel hydride, Berichte der Bunsen-Geselfscheft 76 535–542.

    CAS  Google Scholar 

  12. Muscat, J.P. and Newns, D.M. (1979) A model of H chemisorption on Ni, Pd and Pt for comparison with UPS data, Surface Science 80 189–207.

    Article  CAS  Google Scholar 

  13. Greuter, F., Eberhardt, W., DiNardo, J. and Plummer, E.W. (1981) Summary abstract: H bonding to Ni, Pd and Pt: an angle resolved photoemission study, J. Vac. Sci. Technol. 18 (2) 433–434.

    Article  Google Scholar 

  14. Skala, L., Kunne, L., Fritsche, H.-G. and Muller, H. (1982) Cluster model for interstitial hydrogen bonding in nickel, phys. stat. sol. (b) 114 439–448.

    Article  CAS  Google Scholar 

  15. Greuter, F., Strathy, I. and Plummer, E.W. (1986) Photoemission from H adsorbed on Ni(111) and Pd(111) surfaces, Phys. Rev. B33 736–746.

    Google Scholar 

  16. Takano, A. and Ueda, K. (1992) Detection of hydrogen on nickel (110) surface by electron-stimulated desorption, J. Appl. Phys. 32 1217–1220.

    Google Scholar 

  17. Yamakawa, K., Hohler, B. and Kronmuller, H. (1989) Diffusion of hydrogen in nickel-based alloys, J. Phys.: Condens. Matter. 1 2031–2040.

    Article  CAS  Google Scholar 

  18. Fukai, Y. and Okuma, N. (1993) Evidence of copious vacancy formation in Ni and Pd under a high hydrogen pressure, Jpn. J. Appl. Phys. 32 L1256-L1259.

    Article  CAS  Google Scholar 

  19. Lin, X.W., Ruault, M.O., Traverse, A., Chaumont, J., Salome, M. and Bernas, H. (1986) Structural study of low-temperature-implanted Ni and Pd hydrides, Physical Review Letters 56 1835–1837.

    Article  CAS  Google Scholar 

  20. Mathur, N. and Nigam A.N. (1990) Temperature dependence of electrolytic hydrogen diffusion in Nickel: a thermoelectric study, phys. stat. sol. (a) 122 K59-K62

    Article  CAS  Google Scholar 

  21. Wulz, H.G. and Fromm, E. (1986) Hydrogen absorption rate of titanium, lanthanum, iron, nickel, manganese and palladium films with and without oxygen precoverage at 300 K. Journal of the Less-Common Metals 118 293–301

    Article  CAS  Google Scholar 

  22. Altunoglu, A.K., Blackburn, D.A., Braithwaite, N.St.J. and Grant, D.M. (1991) Permeation of hydrogen through nickel foils: surface reaction rates at low temperatures, Journal of the Less-Common Metals 112–174 718–726.

    Article  Google Scholar 

  23. Rice, B.M., Garret, B.C., Koszykowski, M.L., Foiles, S.M. and Daw, M.S. (1989) Kinetic isotope effects for hydrogen diffusion in bulk nickel and on nickel surfaces, J. Chem. Phys. 92 775–791.

    Article  Google Scholar 

  24. Tanaka, K., Ryonai, H. and Yamada, M. (1981) Internal friction peaks in cold-worked and hydrogen-charged nickel, J. Appl. Phys. 52 3992–3999.

    Article  CAS  Google Scholar 

  25. Lewis, F.A., Lewis, I. and McKee, S.G. (1984) Correlations of the relationships between hydrogen content, hydrogen chemical potential and electrical resistivity for palladium alloy — hydrogen systems: possible catastrophe theory representation of relationships, J. Less-Common Metals 101 503–521.

    Article  CAS  Google Scholar 

  26. Freel, J., Robertson, S.D. and Anderson, R.B. (1970) The structure of Raney nickel. III. The chemisorption of hydrogen and carbon monoxide, Journal of Catalysis 18 243–248.

    Article  CAS  Google Scholar 

  27. Nakabayashi, I., Hisano, T. and Terazawa, T. (1979) Activity and hydrogen content of a plate-type Raney nickel catalyst, Journal of Catalysis 58 74–81.

    Article  CAS  Google Scholar 

  28. Chen, L. and Lasia, A. (1993) Ni-Al powder electrocatalyst for hydrogen evolution, J. Electrochem. Soc. 140 2464–2473.

    Article  CAS  Google Scholar 

  29. Sakai, T., Yuasa, A., Ishikawa, H., Miyamura, H. and Kuriyama, N. (1991) Nickel-metal hydride battery using microencapsulated alloys, J. Less-Common Metals 172–174 1194–1204.

    Article  Google Scholar 

  30. Venkatesan, S.and B. Reichman (1989) Polarization studies with ovonic metal hydride batteries, Proc. 24th Intern. Society Energy Conversion Engineering Conference IECEC-89, August 6–11, 1989, Washington, vol. 3, pp. 1665–1669.

    Google Scholar 

  31. Matsuoka, M., Kohno, T. and Iwakura, C. (1993) Electrochemical properties of hydrogen storage alloys modified with foreign metals, Electrochimica Acta 38 787–791.

    Article  CAS  Google Scholar 

  32. Meli, F., Zuettel, A. and Schlapbach, L. (1992) Surface and bulk properties of LaNi5-XSiX alloys from the viewpoint of battery applications, J. Alloys and Compounds 190 17–24.

    Article  CAS  Google Scholar 

  33. Jaksic, M.M., Johansen, B. and Tunold, R. (1993) Electrochemical behaviour of palladium in acidic and alkaline solutions of heavy and regular water, Int. J. Hydrogen Energy 18 111–124.

    Article  CAS  Google Scholar 

  34. Khanna, S. N. and Reuse, F. (1993) Hydrogen absorption around neutral and charged Ni atoms, Chem. Phys. Lett. 205 248–252.

    Article  CAS  Google Scholar 

  35. Kritikos, M., Noreus, D., Andresen, A.F. and Fischer, P. (1991) J. Solid State Chem. 92 514–521.

    Article  CAS  Google Scholar 

  36. Lupu, D., Grecu, R. and Farcas, S. (1993) Optical properties of Mg2NiH4 and hydrogen diffusion, Z. Physikalische Chemie 181 143–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kleperis, J., Vaivars, G., Vitins, A., Lusis, A., Galkin, A. (1996). Electrochemical Investigation of Hydrogen Evolution and Absorption Phenomena in Nickel Based Electrodes. In: Barsukov, V., Beck, F. (eds) New Promising Electrochemical Systems for Rechargeable Batteries. NATO ASI Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1643-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1643-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7235-9

  • Online ISBN: 978-94-009-1643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics