Skip to main content

Part of the book series: NATO ASI Series ((ASHT,volume 6))

  • 429 Accesses

Abstract

The worldwide increase of road traffic with the necessity to limit the specific emissions requires the development of alternative propulsion systems. An electric car with a battery or a fuel cell as energy conversion system seems to be the most promising solution. Therefore, internal combustion engines using gasoline or Diesel are compared with electric propulsion systems powered by batteries and fuel cells in terms of energy efficiency, specific emissions, range and costs. The main components of a system using methanol as energy carrier and a Proton Exchange Membrane Fuel Cell (PEMFC) are described. Important aspects of fuel processing and its implications for the development of electrocatalysts for PEMFC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Umweltbundesamt (1994), Daten zur Umwelt 1992/93, Umweltbundesamt, Berlin.

    Google Scholar 

  2. Biedermann, P., Höhlein, B., Sackmann, B., and Summing, U. (1995) On the Environmental impact of energy conversion systems, in F. Lapicque, A. Storck and A.A. Wang (eds.), Electrochemical Engineering and Energy, Plenum Press, New York, pp. 1–22.

    Google Scholar 

  3. Ledjeff, K. (1993) Neue Hochenergiebatterien für Elektroautos, in K. Ledjeff (ed.), Energie für Elektroautos — Batterien und Brennstoffzellen, Verlag C.F. Müller, Karlsruhe, pp. 97–119.

    Google Scholar 

  4. Kircher, R., Birkle, S., Nölscher, C, and Voigt, H., (1994) PEM Fuel Cells for Traction: System Technology Aspects and Potential Benefits, Fuel Cells for Traction Applications, Royal Swedish Academy of Engineering Sciences, Stockholm, pp. 124–138.

    Google Scholar 

  5. Biedermann, P., Düsterwald, H.G., Höhlein, B., Summing, U., Birkle, S., Kircher, R., Nölscher, C, Voigt, H., and Drenckhahn, W., (1994) Energy conversion chains and legally restricted emissions for road traffic in Germany, 27th ISATA Conference, Aachen, 31st Oct-4th Nov, 94 EN023, pp. 2-15.

    Google Scholar 

  6. Appleby, A.J., and Foulkes, F.R., (1989) Fuel Cell Handbook, Van Nostrand Reinhold, Nex York.

    Google Scholar 

  7. Schmidt, V.M., Bröckerhoff, P., Höhlein, B., Menzer, R., and Summing, U., (1994) Utilization of methanol for polymer electrolyte fuel cells in mobile systems, J. Power Sources, 49, 299–313.

    Article  CAS  Google Scholar 

  8. Bøgild Hansen, J., Aasberg-Petersen, K., and Höhlein, B., (1994) PEM Fuel Cells for Traction: System Technology Aspects and Potential Benefits, Fuel Cells for Traction Applications, Royal Swedish Academy of Engineering Sciences, Stockholm, pp. 90–123.

    Google Scholar 

  9. Appleby, A.J., (1995) Electrochemical energy — progress towards a cleaner future: lead/acid batteries and the competition, J. Power Sources, 53, 187–197.

    Article  CAS  Google Scholar 

  10. Cappadonia, M., Erning, J.W., Saberi Niaki, S.M., and Stimming, U., (1995) Conductance of Nafion 117 membranes as a function of temperature and water content, Solid State Ionics, 77, 65–69.

    Article  CAS  Google Scholar 

  11. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J. (1994) CO electrooxidation on well-characterized Pt-Ru alloys, J. Phys. Chem., 98, 617–625.

    Article  CAS  Google Scholar 

  12. Ianniello, R., Schmidt, V.M., Stimming, U., Stumper, J., and Wallau, A., (1994) CO adsorption and oxidation on Pt and Pt-Ru alloys: dependence on substrate composition, Electrochim. Acta, 39, 1863–1869.

    Article  CAS  Google Scholar 

  13. Grüne, H., Luft, G., Mund, K., and Waidhas, M., (1994) Research and development of low temperature fuel cells at Siemens, Fuel Cell Seminar, San Diego, Extended Abstracts, pp. 474–478.

    Google Scholar 

  14. Surampudi, S., Narayanan, S.R., Vamos, E., Frank, H., Halpert, G., LaConti, A., and Kosek, J., (1994) Advances in direct oxidation methanol fuel cells, J. Power Sources, 47, 377–385.

    Article  CAS  Google Scholar 

  15. Shukla, A.K., Christensen, P.A., Hamnett, A., and Hogarth, M.P., (1995) A vapor-feed direct-methanol fuel cell with proton-exchange membrane electrolyte, J. Power Sources, 55, 87–91.

    Article  CAS  Google Scholar 

  16. Höhlein, B., Menzer, R., Schmidt, V.M., and Summing, U., (1995) Basic concepts for fuel cell systems with direct oxidation of methanol, 4th Grove Fuel Cell Symposium, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schmidt, V.M., Stimming, U. (1996). Fuel Cell Systems for Vehicle Applications. In: Barsukov, V., Beck, F. (eds) New Promising Electrochemical Systems for Rechargeable Batteries. NATO ASI Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1643-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1643-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7235-9

  • Online ISBN: 978-94-009-1643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics