Skip to main content

Hemostatic risk factors for cardiovascular disease

  • Chapter
Triggering of Acute Coronary Syndromes

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 170))

Abstract

Accumulating evidence suggests the increasing importance of hemostatic cardiovascular risk factors. First, acute manifestations of cardiovascular disease have been shown to be primarily due to partial or complete thrombotic vessel occlusion at the site of a ruptured atherosclerotic plaque [1]. Second, several hemostatic factors have been identified as apparent independent cardiovascular risk factors [2, 3]. Third, traditional risk factors such as smoking and hyperlipidemia have been associated with elevated hemostatic factors. Fourth, studies demonstrating a preventive effect for aspirin suggest that increased platelet aggregability is a risk factor [4]. Fifth, the link between acute variations in hemostatic variables and the risk of myocardial infarction (MI) has been strengthened by the identification of a close temporal association between the increased morning risk of MI [5, 6] and sudden cardiac death [7], and increased platelet reactivity [8,9] and plasma viscosity [10], and decreased fibrinolytic activity [11]. Finally, the traditional risk factors do not fully explain the cardiovascular risk in a population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 1990; 82(Suppl II): II-47-II-59.

    Google Scholar 

  2. Trip MD, Manger Cats V, van Capelle FJL, Vreeken J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990; 322: 1549–54.

    Article  PubMed  CAS  Google Scholar 

  3. Meade TW, Mellows S, Brozovic M et al. Hemostatic function and ischemic heart disease: Principal results of the Northwick Park Heart Study. Lancet 1986; 2: 533–7

    Article  PubMed  CAS  Google Scholar 

  4. The Steering Committee of the Physicians’ Health Study Research Group. Final report on aspirin component of the ongoing Physicians’ Health Study. N Engl J Med 1989; 321: 129–35.

    Article  Google Scholar 

  5. Muller JE, Stone PH, Turi ZG et al. for the MILIS Study Group. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 1985; 313: 1315–22.

    Article  PubMed  CAS  Google Scholar 

  6. Tofler GH, Muller JE, Stone PH et al. Modifiers of timing and possible triggers of acute myocardial infarction in the Thrombolysis in Myocardial Infarction Phase II (TIMI II) Study Group. J Am Coll Cardiol 1992; 20: 1049–55.

    Article  PubMed  CAS  Google Scholar 

  7. Willich SN, Levy D, Rocco MB, Tofler GH, Stone PH, Muller JE. Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study Population. Am J Cardiol 1987; 60: 801–6.

    Article  PubMed  CAS  Google Scholar 

  8. Tofler GH, Brezinski DA, Schafer AI et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 1987; 316: 1514–8.

    Article  PubMed  CAS  Google Scholar 

  9. Haus E, Cusulos M, Sackett-Lundeen L, Swoyer I. Circadian variation in blood coagulation parameters, alpha anti-trypsin antigen and platelet aggregation and retention in clinically healthy subjects. Chronobiology Int 1990; 7: 203–16.

    Article  CAS  Google Scholar 

  10. Ehrly AM, Jung G. Circadian rhythm of human blood viscosity. Biorheology 1973; 10: 577–83.

    PubMed  CAS  Google Scholar 

  11. Andreotti F, Davies GJ, Hackett DR et al. Major circadian fluctuations in fibrinolytic activity and the possible relevance to time of onset of myocardial infarction, sudden cardiac death and stroke. Am J Cardiol 1988; 62: 635–7.

    Article  PubMed  CAS  Google Scholar 

  12. Davies MJ, Thomas AC. Plaque Assuring-the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 1985; 53: 363–73.

    Article  PubMed  CAS  Google Scholar 

  13. Tracy RP, Bovill EG. Thrombosis and cardiovascular risk in elderly. Arch Pathol Lab Med 1992; 116: 1307–12.

    PubMed  CAS  Google Scholar 

  14. Berk BC, Weintraub WS, Alexander RW. Elevation of C-reactive protein in “active” coronary artery disease. Am J Cardiol 1990; 65(3): 168–72.

    Article  PubMed  CAS  Google Scholar 

  15. Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk for cardiovascular disease. J Am Med Assoc 1987; 258: 1183–6.

    Article  CAS  Google Scholar 

  16. Yarnell JW, Sweetnam PM, Elwood PC et al. Hemostatic factors and ischemic heart disease. The Caerphilly Study. Br Heart J 1985; 53(5): 483–7.

    Article  PubMed  CAS  Google Scholar 

  17. Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM Study in healthy men. Arterioscler Thromb 1994; 14: 54–9.

    Article  PubMed  CAS  Google Scholar 

  18. Wilhelmsen L, Svarsudd K, Korsan-Bengsten K, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 311: 501–5.

    Article  PubMed  CAS  Google Scholar 

  19. Stone MC, Thorp JM. Plasma fibrinogen-a major risk factor. J R Coll Gen Prac 1985; 35: 565–9.

    CAS  Google Scholar 

  20. Haines AP, Howarth D, North WRS et al. Haemostatic variables and the outcome of myocardial infarction. Thromb Haemostas 1983; 50: 800–3.

    CAS  Google Scholar 

  21. Fuchs J, Pinhas A, Davidson E, Rotenberg Z, Agmon J, Weinberger I. Plasma viscosity, fibrinogen and haematocrit in the course of unstable angina. Eur Heart J 1989; 299: 643–6.

    Google Scholar 

  22. Ernst E, Resch KL. Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Int Med 1993; 118: 956–63.

    PubMed  CAS  Google Scholar 

  23. Meade TW. Epidemiology of atheroma, thrombosis and ischemic heart disease. In Bloom AL, Thomas DP (eds): Haemostasis and thrombosis, 2nd edition. Edinburgh: Churchill-Livingstone 1987; 371–8.

    Google Scholar 

  24. Yarnell JWG, Sweetnam PM, Elwood PC et al. In Lane DA, Henschen A, Jasani MK (eds): Fibrinogen fibrin formation and fibrinolysis. Berlin: Walter de Gruyter & co. 1986; 371–8.

    Google Scholar 

  25. Kruskal JB, Commerford PJ, Franks JJ, Kirsch RE. Fibrin and fibrinogen-related antigens in patients with stable and unstable coronary artery disease. N Engl J Med 1987; 317: 1361–5.

    Article  PubMed  CAS  Google Scholar 

  26. Broadhurst P, Kelleher C, Hughes L, Imeson JD, Raftery EB. Fibrinogen, factor VII clotting activity and coronary artery disease severity. Atherosclerosis 1990; 85: 169–73.

    Article  PubMed  CAS  Google Scholar 

  27. Schneidau A, Harrison MJH, Hurst C, Wilkes HC, Meade TW. Arterial disease risk factors and angiographic evidence of atheroma of carotid artery. Stroke 1989; 20: 1466–71.

    Article  PubMed  CAS  Google Scholar 

  28. Folsom AR, Conlan MG, Davis CE, Wu KK for the Atherosclerosis Risk In Communities (ARIC) Study Investigators. Relations between hemostatic variables and cardiovascular risk factors in middle-aged adults. Ann Epidemiol 1992; 2: 481–94.

    Article  PubMed  CAS  Google Scholar 

  29. Kannel WB, D’Agostino RB, Balanger AJ. Fibrinogen, cigarette smoking, and risk of cardiovascular disease: insights from the Framingham study. Am Heart J 1987; 113: 1006–10.

    Article  PubMed  CAS  Google Scholar 

  30. Lee AJ, Smith WCS, Lowe GDO, Tunstall-Pedoe H. Plasma fibrinogen and coronary risk factors: the Scottish Heart Health Study. J Clin Epidemiol 1990; 43: 913–9.

    Article  PubMed  CAS  Google Scholar 

  31. Meade TW, Imeson J, Stirling Y. Effects of changes in smoking and other characteristics on clotting factors and the risk of ischemic heart disease. Lancet 1987; 2: 986–8.

    Article  PubMed  CAS  Google Scholar 

  32. Fuller JH, Keen H, Jarrett RJ et al. Haemostatic variables associated with diabetes and its complications. Br Med J 1979; 2: 964–6.

    Article  PubMed  CAS  Google Scholar 

  33. Meade TW, Dyer S, Howarth DJ, Imeson JD, Stirling Y. Antithrombin III and procoagu-lant activity: sex differences and effects of the menopause. Br J Haematol 1990; 74: 77–81.

    Article  PubMed  CAS  Google Scholar 

  34. Meade TW, Chakrabarti R, Haines AP, Howarth DJ, North WRS, Stirling Y. Haemostatic, lipid and blood pressure profiles of women on oral contraceptive containing 50 ug or 30 ug oestrogen. Lancet 1977; 2: 948–51.

    Article  PubMed  CAS  Google Scholar 

  35. Alkjaersig N, Fletcher AP, DeZeigler D, Steingold KA, Meldrum DR, Judd HL. Blood coagulation in postmenopausal women given estrogen treatment: comparison of transdermal and oral administration. J Lab Clin Med 1988; 111: 224–8.

    PubMed  CAS  Google Scholar 

  36. Moller L, Kirstensen TS. Plasma fibrinogen and ischemic heart disease risk factors. Art-erioscler Thromb 1991; 11: 344–50.

    Article  CAS  Google Scholar 

  37. Meade TW, Chakrabarti R, Haines AP, North WRS, Stirling Y. Characteristics affecting fibrinolytic activity and plasma fibrinogen concentration. Br Med J 1979; 1: 153–6.

    Article  PubMed  CAS  Google Scholar 

  38. Jadhav PP, Gebara OCE, Mittleman M et al. Moderate alcohol consumption is associated with a beneficial effect on hemostasis: analysis of the Framingham Offspring Study. J Am Coll Cardiol March 1994: 67A (Abstract).

    Google Scholar 

  39. Elwood PC, Beswick AD, O’Brien JR, Yarnell JW, Layzell JC, Limb ES. Inter-relationships between hemostatic tests and the effects of some dietary determinants in the Caerphilly cohort of older men. Blood Coagul Fibrinolysis 1993; 4(4): 529–36.

    Article  PubMed  CAS  Google Scholar 

  40. Krobot K, Hense HW, Cremer P, Eberle E, Keil U. Determinants of plasma fibrinogen: relation to body weight, waist-to-hip ratio, smoking, alcohol, age, and sex. Results from the second MONICA Augsberg survey 1989–1990. Arterioscler Thromb 1992; 12(7): 780–8.

    Article  PubMed  CAS  Google Scholar 

  41. Meade T, Chakrabarti R, Haines A, North W, Stirling Y, Thompson S. Hemostatic function and cardiovascular death: early results of prospective study. Lancet 1980; 1: 1050–4.

    Article  PubMed  CAS  Google Scholar 

  42. Hoffman C, Shah A, Sodums M, Hultin MB. Factor VII activity state in coronary artery disease. J Lab Clin Med 1988; 111: 475–81.

    PubMed  CAS  Google Scholar 

  43. Hoffman CJ, Miller RH, Lawson WE, Hultin MB. Elevation of factor VII activity and mass in young adults at risk of ischemic heart disease. J Am Coll Cardiol 1989; 14: 941–6.

    Article  PubMed  CAS  Google Scholar 

  44. Suzuki T, Yamauchi K, Matsushita T et al. Elevation of factor VII activity and mass in coronary artery disease of varying severity. Clin Cardiol 1991; 14: 731–6.

    Article  PubMed  CAS  Google Scholar 

  45. Bruckert E, Carvalho de Sousa J, Giral P et al. Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis 1989; 75: 129–34.

    Article  PubMed  CAS  Google Scholar 

  46. Carvalho de Sousa J, Bruckert E, Giral P et al. Plasma factor VII, triglyceride concentration and fibrin degradation products in primary hyperlipidemia: a clinical and laboratory study. Haemostasis 1989; 19: 83–90.

    PubMed  CAS  Google Scholar 

  47. Dalaker K, Hjermann I, Prydz H. A novel form of factor VII in plasma from men at risk for cardiovascular disease. Br J Haematol 1985; 61: 315–22.

    Article  PubMed  CAS  Google Scholar 

  48. Hamsten A. Hypertriglyceridemia, triglyceride-rich lipoproteins and coronary heart disease. In Betteridge J (ed): Lipid and lipoproteins. Bailliere’s Clin Endocrinol Metab 1990; 4: 895–922.

    Google Scholar 

  49. Miller GJ, Martin JC, Webster J et al. Association between dietary fat intake and plasma factor VII coagulant activity-a predictor of cardiovascular mortality. Atherosclerosis 1986; 60: 269–77.

    Article  PubMed  CAS  Google Scholar 

  50. Mitropoulos KA, Miller GJ, Reeves BEA, Wilkes HC, Cruickshank JK. Factor VII coagulant activity is strongly associated with plasma concentration of large lipoprotein particles in middle-aged men. Atherosclerosis 1989; 76: 203–8.

    Article  PubMed  CAS  Google Scholar 

  51. Scarabin PY, Bara L, Samama M, Orssaud G. Further evidence that activated factor VII is related to plasma lipids. Br J Haematol 1985; 61: 186–7.

    Article  PubMed  CAS  Google Scholar 

  52. Hamsten A, Wiman B, de Faire U. Blomback M. Increased plasma levels of rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313: 1557–63.

    Article  PubMed  CAS  Google Scholar 

  53. Gram J, Jespersen J. A selective depression of tissue plasminogen activator (t-PA) in euglobulin characterizes a risk group among survivors of myocardial infarction. Thromb Haemostas 1987; 57: 137–9.

    CAS  Google Scholar 

  54. Munkvad S, Gram J, Jespersen J. A depression of active tissue plasminogen activator in plasma characterizes patients with unstable angina pectoris who develop myocardial infarction. Eur Heart J 1990: 11: 525–8.

    PubMed  CAS  Google Scholar 

  55. Gebara OCE, Mittleman MA, Sutherland P et al. Association between increased estrogen status and increased fibrinolytic potential in the Framingham Offspring Study. Circulation 1995; 91 (7): 1952–8.

    PubMed  CAS  Google Scholar 

  56. Jansson JH, Nilsson TK, Olofsson BO. Tissue plasminogen activator and other risk factors of cardiovascular events in patients with severe angina pectoris. Eur Heart J 1991; 12: 157–61.

    PubMed  CAS  Google Scholar 

  57. Jansson JH, Olofsson BO, Nilsson TK. Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. A 7-year follow-up. Circulation 1993; 88(part 1): 2030–4.

    PubMed  CAS  Google Scholar 

  58. Ridker PM, Vaughen DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 1993; 341: 1165–8.

    Article  PubMed  CAS  Google Scholar 

  59. Hamsten A, Blomback M, Wiman B et al. Hemostatic function in myocardial infarction. Br Heart J 1986; 55: 58–66.

    Article  PubMed  CAS  Google Scholar 

  60. Johnson O, Mellbring G, Nilsson T. Defective fibrinolysis in survivors of myocardial infarction. Int J Cardiol 1984; 6: 380–2.

    Article  PubMed  CAS  Google Scholar 

  61. Paramo JA, Colucci M, Collen D, Van der Werf F. Plasminogen activator inhibitor in blood of patients with coronary artery disease. Br Med J 1985; 291: 575–6.

    Article  Google Scholar 

  62. Aznar J, Estelles A, Tormo G et al. Plasminogen activator inhibitor activity and other fibrinolytic variables in patients with coronary artery disease. Br Heart J 1988; 59: 535–41.

    Article  PubMed  CAS  Google Scholar 

  63. Francis RB, Kawanishi D, Baruchi T, Mahner P, Rahimtoola S, Feinstein DI. Impaired fibrinolysis in coronary artery disease. Am Heart J 1988; 115: 776–80.

    Article  PubMed  Google Scholar 

  64. Hellsten G, Boman K, Bjerle P, Blom P, Nilsson TK. Increased plasminogen activator inhibitor and tissue plasminogen activator levels in subjects with electrocardiographic abnormality indicative of ischemic heart disease: A cross-sectional study in Norsjo, Sweden. Eur Heart J 1992; 13: 57–60.

    PubMed  CAS  Google Scholar 

  65. Zalewski A, Shi Y, Nardone D et al. Evidence for reduced fibrinolytic activity in unstable angina at rest: Clinical, biochemical, and angiographic correlates. Circulation 1991; 83: 1685–91.

    PubMed  CAS  Google Scholar 

  66. Huber K, Rose D, Resch I et al. Circadian fluctuations of plasminogen activator inhibitor and tissue plasminogen activator levels in plasma of patients with unstable coronary artery disease and acute myocardial infarction. Thromb Haemostas 1988; 60: 372–6.

    CAS  Google Scholar 

  67. Allen RA, Kluft C, Brommer EJP. The acute effect of smoking on fibrinolysis: Increase in the activity level of circulating (tissue-type) plasminogen activator. Eur J Clin Invest 1984; 14: 354–61.

    Article  PubMed  CAS  Google Scholar 

  68. Hashimoto Y, Kobayashi Y, Yamazaki N, Takada Y, Takada A. Relationship between smoking and fibrinolytic system with special reference to tPA and PA inhibitor. Thromb Res 1988; 51: 303–11.

    Article  PubMed  CAS  Google Scholar 

  69. Allen RA, Kluft C, Brommer EJP. Effect of chronic smoking on fibrinolysis. Arteriosclerosis 1985; 5: 443–50.

    Article  PubMed  CAS  Google Scholar 

  70. Stubbe I, Mittleman M, Gebara OCE et al. Impaired fibrinolysis in cigarette smokers in the Framingham Offspring Study. Circulation 1994; 90(2): 1–101 (Abstract).

    Google Scholar 

  71. Juhan-Vague I, Roui C, Alessi MC, Ardissone JP, Heim M, Vague P. Increased plasminogen activator inhibitor activity in non-insulin dependant diabetic patients — relationship with plasma insulin. Thromb Haemostas 1989; 61: 370–3.

    CAS  Google Scholar 

  72. Auwerx J, Bouillon R, Collen D, Geboers J. Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 1988; 8: 68–72.

    Article  PubMed  CAS  Google Scholar 

  73. Juhan-Vague I, Alessi MC, Vague P. Increased plasminogen activator inhibitor 1 levels. A possible link between insulin resistance and atherothrombosis. Diabetologica 1991; 34: 457–62.

    Article  CAS  Google Scholar 

  74. Hamsten A, Wiman B. Fibrinolysis and atherosclerotic cardiovascular disease. In Francis RB, Jr. (ed): Atherosclerotic cardiovascular disease, hemostasis and endothelial function. New York: Marcel Dekker 1992; 107–30.

    Google Scholar 

  75. Juhan-Vague I, Vague P. Hyperinsulinemia and its effects on coagulation and fibrinolysis. In Francis RB, Jr. (ed): Atherosclerotic cardiovascular disease, hemostasis and endothelial function. New York: Marcel Dekker 1992; 141–82.

    Google Scholar 

  76. Juhan-Vague I, Alessi MC, Joly P et al. Plasma plasminogen activator inhibitor-1 in angina pectoris. Influence of plasma insulin and acute-phase response. Arteriosclerosis 1989; 9: 362–7.

    Article  PubMed  CAS  Google Scholar 

  77. Vague P, Juhan-Vague I, Aillaud MF et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level and relative body weight in normal and obese subjects. Metabolism 1986; 2: 250–3.

    Article  Google Scholar 

  78. Sundell IB, Nilsson TK, Hallmans G, Nygren C. The effect of body build, diet and endocrine factors on the extrinsic fibrinolytic system in healthy young women. Scand J Clin Invest 1988; 48: 557–64.

    Article  PubMed  CAS  Google Scholar 

  79. Sundell IB, Nilsson TK, Hallmans G, Hellsten G, Dahlen GH. Interrelationships between plasminogen activator inhibitor, tissue plasminogen activator, lipoprotein (a), and established cardiovascular risk factors in a North Swedish population. Atherosclerosis 1989; 80: 9–16.

    Article  PubMed  CAS  Google Scholar 

  80. Landin K, Stigendal L, Eriksson E et al. Abdominal obesity is associated with an impaired fibrinolytic activity and elevated plasminogen activator inhibitor-1. Metabolism 1990; 39: 1044–8.

    Article  PubMed  CAS  Google Scholar 

  81. Mehta J, Mehta P, Lawson D, Saldeen T. Plasma tissue plasminogen activator inhibitor levels in coronary artery disease: correlation with age and serum triglyceride concentrations. J Am Coll Cardiol 1987; 9: 263–8.

    Article  PubMed  CAS  Google Scholar 

  82. Juhan-Vague I, Vague PH, Alessi MC et al. Relationships between plasma insulin, triglyceride, body mass index, and plasminogen activator inhibitor 1. Diab Metab 1987; 13: 331–6.

    CAS  Google Scholar 

  83. Elkeles RS, Chakrabarti R, Vickers M, Stirling Y, Meade TW. Effect of treatment of hyperlipidemia on hemostatic variables. Br Med J 1980; 281: 973–4.

    Article  PubMed  CAS  Google Scholar 

  84. Simpson HCR, Meade TW, Stirling Y, Mann JI, Chakrabarti R, Woolf L. Hypertriglyceridemia and hypercoagulability. Lancet 1983; i: 786–9.

    Article  Google Scholar 

  85. Andersen P, Nilsen DWT, Lyberg Beckmann S, Holme I, Hjermann I. Increased fibrino-lytic potential after diet intervention in healthy coronary high-risk individuals. Acta Scand Med 1988; 223: 499–506.

    Article  CAS  Google Scholar 

  86. Mehrbian M, Peter JB, Barnard RJ, Lusis AJ. Dietary regulation of fibrinolytic factors. Atherosclerosis 1990; 84: 25–32.

    Article  Google Scholar 

  87. Andersen P, Smith P, Seljeflot I, Brataker S, Arnesen H. Effects of gemfibrozil on lipids and hemostasis after myocardial infarction. Thromb Haemostas 1990; 63: 174–7.

    CAS  Google Scholar 

  88. Landin K, Tegborn L, Smith U. Elevated fibrinogen and plasminogen activator inhibitor (PAI-1) in hypertension are related to metabolic risk factors for cardiovascular disease. J Intern Med 1991; 227: 273–8.

    Article  Google Scholar 

  89. Carmody MW, Ault KA, Mitchell JG, Rote NS, Ng AK. Production of monoclonal antibodies specific for platelet activation antigens and their use in evaluating platelet function. Hybridoma 1990; 9(6): 631–41.

    Article  PubMed  CAS  Google Scholar 

  90. Martin JF, Bath PMW, Burr ML. Influence of platelet size on outcome after myocardial infarction. Lancet 1991; 338: 1409–11.

    Article  PubMed  CAS  Google Scholar 

  91. Elwood PC, Beswick AD, Sharp DS et al. Whole blood impedance platelet aggregometry and ischemic heart disease. The Caerphilly Collaborative Heart Disease Study. Arteriosclerosis 1990; 10(6): 1032–6.

    Article  PubMed  CAS  Google Scholar 

  92. Wu KK, Hoak JC. Spontaneous platelet aggregation in arterial insufficiency: mechanisms and implications. Thromb Haemostas 1976; 35: 702–11.

    CAS  Google Scholar 

  93. Fitzgerald DJ, Roy L, Catella F, Fitzgerald G A. Platelet activation in unstable coronary artery disease. N Engl J Med 1986; 315: 983–9.

    Article  PubMed  CAS  Google Scholar 

  94. Halushka PV, Lurie D, Colwell JA. Increased synthesis of prostaglandin-like material by platelets from patients with diabetes mellitus. N Engl J Med 1977; 297: 1306–10.

    Article  PubMed  CAS  Google Scholar 

  95. Butkus A, Skrinska VA, Schumacher OP. Thromboxane production and platelet aggregation in diabetic subjects with clinical complications. Thromb Res 1980; 19: 211–23.

    Article  PubMed  CAS  Google Scholar 

  96. Lagarde M, Burtin M, Berciaud P, Blanc M, Velardo B, Dechavanne M. Increase of platelet thromboxane A2 formation and of its plasmatic half-life in diabetes mellitus. Thromb Res 1980; 19: 211–23.

    Article  Google Scholar 

  97. Kwaan HC, Colwell JA, Cruz S, Suwanwela N, Dobbie JG. Increased platelet aggregation in diabetes mellitus. J Lab Clin Med 1972; 80: 236–46.

    PubMed  CAS  Google Scholar 

  98. Neri Serneri GG, Abbate R, Mugnaini C, Gensini GF. Increased platelet aggregation due to plasma aggregatory activity. Haemostasis 1980; 9: 141–56.

    CAS  Google Scholar 

  99. McDonald JWD, Dupre J, Rodger NW, Champion MC, Webb CD, Ali M. Comparison of platelet thromboxane synthesis in diabetic patients on conventional insulin therapy and continuous insulin infusions. Thromb Res 1982; 28: 705–12.

    Article  PubMed  CAS  Google Scholar 

  100. Chao FC, Tullis JL, Alper CA, Glynn RJ, Silbert JE. Alterations in plasma proteins and platelet functions with aging and cigarette smoking in healthy men. Thromb Hemostas 1982; 47: 259–64.

    CAS  Google Scholar 

  101. Carlsson I, Wennmalm A. Platelet aggregability in smoking and non-smoking subjects. Clin Physiol 1983; 3: 565–71.

    Article  PubMed  CAS  Google Scholar 

  102. Dotevall A, Kutti J, Teger-Nilsson AC, Wadenwik H, Wilhelmsen L. Platelet reactivity, fibrinogen and smoking. Eur J Hematol 1987; 38(1): 55–9.

    Article  CAS  Google Scholar 

  103. Rival J, Riddle JM, Stein PD. Effects of chronic smoking on platelet function. Thromb Res 1987; 45: 75–85.

    Article  PubMed  CAS  Google Scholar 

  104. Ahlsten G, Ewald U, Tuvemo T. Arachidonic-acid-induced platelet aggregation is increased in male but not in female smokers. Prostaglandins Leukotrienes Med 1986; 21: 149–56.

    Article  CAS  Google Scholar 

  105. Laszlo E, Kaldi N, Kovacs L. Alterations in plasma proteins and platelet functions with aging and cigarette smoking in healthy men. Thromb Haemostas 1983; 49: 150.

    CAS  Google Scholar 

  106. Seiss W, Lorenz R, Roth P, Weber PC. Plasma catecholamines, platelet aggregation and associated thromboxane formation after physical exercise, smoking or norepinephrine infusion. Circulation 1982; 66: 44–8.

    Article  Google Scholar 

  107. Levine PH. An acute effect of cigarette smoking on platelet function. A possible link between smoking and arterial thrombosis. Circulation 1973; 48: 619–23.

    PubMed  CAS  Google Scholar 

  108. Belch JJF, McArdle BM, Burns P, Lowe GDO, Forbes CD. The effects of acute smoking on platelet behavior, fibrinolysis and hemorheology in habitual smokers. Thromb Hemostas 1984; 51: 6–8.

    CAS  Google Scholar 

  109. Stubbe IH, Mitchell J, Gebara OCE et al. Increased platelet activation in cigarette smokers in the Framingham Offspring Study demonstrated by elevated P-Selectin activity. J Am Coll Cardiol March 1994: 67A (Abstract).

    Google Scholar 

  110. Kinlough-Rathbone RL, Packham MA, Mustard JF. Platelet aggregation. In Harker LA, Zimmerman TS (eds): Measurements of platelet function. New York: Churchill Livingstone 1983; 64–91.

    Google Scholar 

  111. Kaplan KL, Owen J. Radioimunnoassays of platelet ö/pha-granule proteins. In Harker LA, Zimmerman TS (eds): Measurements of platelet function. Edinburgh: Churchill Livingstone 1983; 115–125.

    Google Scholar 

  112. Levine SP. Secreted platelet proteins as markers for pathological disorders. In Phillips DR, Shuman MA (eds): Biochemistry of platelets. Orlando, Fla: Academic Press 1986; 378–415.

    Google Scholar 

  113. Prentice CRM, Hassanein AA, McNicol GP, Douglas AS. Studies on blood coagulation, fibrinolysis, and platelet function following exercise in normal and splenectomized people. Br J Haematol 1972; 23: 541–52.

    Article  PubMed  CAS  Google Scholar 

  114. Warlow CP, Ogston D. Effect of exercise on platelet count, adhesion and aggregation. Acta Haematol 1974; 52: 47–52.

    Article  PubMed  CAS  Google Scholar 

  115. Bennett PN. Effect of physical exercise on platelet adhesiveness. Scand J Haematol 1972; 9: 138–41.

    Article  PubMed  CAS  Google Scholar 

  116. Ohri VC, Chatterji JC, Das BK et al. Effect of submaximal exercise on hematocrit, platelet count, platelet aggregation and blood fibrinogen levels. J Sports Med 1983; 23: 127–30.

    CAS  Google Scholar 

  117. Naesh O, Hindberg I, Trap-Jensen J, Lund JO. Post-exercise platelet activation-aggregation and release in relation to dynamic exercise. Clin Physiol 1990; 10: 221–30.

    Article  PubMed  CAS  Google Scholar 

  118. Mehta J, Mehta P. Comparison of platelet function during exercise in normal subjects and coronary artery disease patients: potential role of platelet activation in myocardial ischemia. Am Heart J 1982; 103: 49–53.

    Article  PubMed  CAS  Google Scholar 

  119. Taniguchi N, Furui H, Yamauchi K, Sotobata I. Effects of treadmill exercise on platelet functions and blood coagulating activities in healthy men. Jpn Heart J 1984; 25: 167–80.

    Article  PubMed  CAS  Google Scholar 

  120. Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD. Effect of strenuous exercise on platelet activation state and reactivity. Circulation 1993; 88(part 1): 1502–11.

    PubMed  CAS  Google Scholar 

  121. Meade TW, Vickers MV, Thompson SG, Stirling Y, Haines AP, Miller GJ. Epidemiological characteristics of platelet aggregability. Br Med J 1985; 290: 428–32.

    Article  CAS  Google Scholar 

  122. Renaud SC, Beswick AD, Fehily AM, Sharp DS, Elwood PC. Alcohol and platelet aggregation: the Caerphilly Prospective Heart Disease Study. Am J Clin Nutr 1992; 55: 1012–7.

    PubMed  CAS  Google Scholar 

  123. Veenstra J, van de Pol H, Schaafsma G. Moderate alcohol consumption and platelet aggregation in healthy middle-aged men. Alcohol 1990; 7(6): 547–9.

    Article  PubMed  CAS  Google Scholar 

  124. Mikhailidis AP, Barradas MA, Epemolu O, Dandona P. Ethanol ingestion inhibits human whole blood platelet impedance aggregation. Am J Clin Pathol 1987; 88: 342–5.

    PubMed  CAS  Google Scholar 

  125. Pikaar NA, Wedel M, van der Beek EJ et al. Effects of moderate alcohol consumption on platelet aggregation, fibrinolysis, and blood lipids. Metabolism 1987; 36(6): 538–43.

    Article  PubMed  CAS  Google Scholar 

  126. Folts JD, Demrow HS, Slane PR. Two glasses of red but not white wine inhibits ex-vivo platelet aggregation and increases bleeding time in human volunteers. J Am Coll Cardiol March 1994: 66A (Abstract).

    Google Scholar 

  127. Kinsella JE, Frankel E, German B, Kanner J. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technology 1993; 85–9.

    Google Scholar 

  128. Jansson JH, Nilsson TK, Johnson O. von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death. Br Heart J 1991; 66: 351–5.

    Article  PubMed  CAS  Google Scholar 

  129. Corterallo M, Boschetti C, Cofrancesco E et al. The PLAT Study: hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients. Principal results. Progetto Lombardo Atero-Trombosi (PLAT) Study Group. Arterioscl Thromb 1992; 12(9): 1063–70.

    Article  Google Scholar 

  130. Stomorken H, Erikssen J. Plasma antithrombin III and factor VIII antigen in relation to angiographic findings, angina and blood groups in middle aged men. Thromb Haemostas 1977; 38: 874–80.

    Google Scholar 

  131. Thaler E, Lechner K. Antithrombin III deficiency and thromboembolism. Clin Haematol 1981; 10: 369–90.

    PubMed  CAS  Google Scholar 

  132. Michiels JJ, Van Vliet HHDM. Hereditary antithrombin III deficiency and venous thrombosis. Neth Med J 1984; 27: 226–32.

    CAS  Google Scholar 

  133. Meade TW, Cooper J, Miller GJ, Howarth D, Stirling Y. Antithrombin III and arterial disease. Lancet 1991; 337: 850–1.

    Article  Google Scholar 

  134. Yue R, Gertler M, Starr T, Koutrouby R. Alterations of plasma antithrombin III levels in ischemic heart disease. Thromb Haemostas 1976; 35: 598–606.

    CAS  Google Scholar 

  135. Banerjee R, Sahni A, Kumar V, Arya M. Antithrombin III deficiency in maturity onset diabetes mellitus and atherosclerosis. Thromb Diath Haemorrhag 1974; 31: 339–45.

    CAS  Google Scholar 

  136. Vigano S, Mannucci PM, D’angelo A et al. Protein C antigen is not an acute phase reactant and is often high in ischemic heart disease and diabetes. Thromb Haemostas 1984; 52: 263–6.

    CAS  Google Scholar 

  137. O’Connor NTJ, Broekmans AW, Bertina RM. Protein C values in coronary artery disease. Br Med J 1984; 289: 1192.

    Article  Google Scholar 

  138. Muller JE, Ludmer PL, Willich SN et al. Circadian variation in the frequency of sudden cardiac death. Circulation 1987; 75: 131–8.

    Article  PubMed  CAS  Google Scholar 

  139. Muller JE, Tofler GH, Stone PH et al. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989; 79: 733–43.

    Article  PubMed  CAS  Google Scholar 

  140. Brezinski DA, Tofler GH, Muller JE et al. Morning increase in platelet aggregability: association with assumption of upright posture. Circulation 1988; 78: 35–40.

    Article  PubMed  CAS  Google Scholar 

  141. Rosing DR, Brakman P, Redwood DR et al. Blood fibrinolytic activity in man: diurnal variation and the response to varying intensities of exercise. Circ Res 1970; 27: 171–84.

    PubMed  CAS  Google Scholar 

  142. Speiser W, Langer W, Pschaik A et al. Increased blood fibrinolytic activity after physical exercise: comparative study in individuals with different sporting activities and in patients after myocardial infarction, sudden cardiac death, and stroke. Am J Cardiol 1988; 62: 635–7.

    Article  Google Scholar 

  143. Millar-Craig MW, Bishop CN, Raftery EB. Circadian variaton of blood pressure. Lancet 1978; 1: 795–7.

    Article  PubMed  CAS  Google Scholar 

  144. Fujita M, Franklin D. Diurnal changes in coronary blood flow in conscious dogs. Circulation 1987; 76: 488–91.

    Article  PubMed  CAS  Google Scholar 

  145. Humphries SE. The genetic contribution to the risk of thrombotic and cardiovascular disease. Trends Cardiovasc Med 1994; 4: 8–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Jadhav, P.P., Tofler, G.H. (1996). Hemostatic risk factors for cardiovascular disease. In: Willich, S.N., Muller, J.E. (eds) Triggering of Acute Coronary Syndromes. Developments in Cardiovascular Medicine, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1577-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1577-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7205-2

  • Online ISBN: 978-94-009-1577-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics