Skip to main content

The genetic contribution to the onset of acute coronary heart disease

  • Chapter
Triggering of Acute Coronary Syndromes

Abstract

The genetic factors associated with a predisposition to acute coronary syndromes such as myocardial infarction (MI) and sudden death may act through chronic processes, mainly atherosclerosis, hypertension, vascular and cardiac hypertrophy and endothelial dysfunction; or acutely, by promoting plaque rupture, thrombosis or vasoconstriction. These pathological manifestations are tightly interconnected. Chronic processes modify the probability of the occurrence of acute manifestations and, conversely, plaque rupture and thrombosis may contribute to accelerated evolution of the atheromatous plaque. The interplay of these different factors may affect the risk of an individual developing an acute coronary event in response to a triggering factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (first of two parts). N Engl J Med 1992; 326: 242–50.

    Article  PubMed  CAS  Google Scholar 

  2. Henney AM, Wakeley PR, Davies MJ et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 1991; 88: 8154–8.

    Article  PubMed  CAS  Google Scholar 

  3. Young SG. Recent progress in understanding apolipoprotein B. Circulation 1989; 80: 219–33.

    Article  Google Scholar 

  4. Myant NB. Familial defective apolipoprotein B100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis 1993; 104: 1–18.

    Article  PubMed  CAS  Google Scholar 

  5. Soria LF, Ludwig EH, Clarke HRG, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B muation and familial defective ApoB100. Proc Natl Acad Sci USA 1989; 86: 587–91.

    Article  PubMed  CAS  Google Scholar 

  6. Hobbs HH, Russel DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet 1990; 24: 133–70.

    Article  PubMed  CAS  Google Scholar 

  7. Cambien F, Evans AE, Cambou JP et al. Body mass is associated with myocardial infraction in individuals carrying the 48 repeats allele of the ApoB 3′ hypervariable region. Am J Hum Genet 1992; 51: A 146.

    Google Scholar 

  8. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–30.

    Article  PubMed  CAS  Google Scholar 

  9. Uterman G, Pruin N, Steinmetz A. Polymorphism of apolipoprotein E. III. Effect of a single polymorphic gene locus on plasma lipid levels in man. Clin Genet 1979; 15: 63–72.

    Article  Google Scholar 

  10. Gerdes LU, Klausen IC, Sihm I, Faegerman O. Apolipoprotein E polymorphism in a Danish population compared to findings in 45 other study populations around the world. Genet Epidemiol 1992; 9: 155–67.

    Article  PubMed  CAS  Google Scholar 

  11. Weisgraber KH, Innerarity TL, Rall SC, Mahley RW. Abnormal receptor-binding activity of the human E apolipoprotein due to the cystein-arginin interchange at a single site. J Biol Chem 1982; 257: 2518–21.

    PubMed  CAS  Google Scholar 

  12. Weisgraber KH. Apolipoprotein E distribution among human plasma lipoproteins: role of cysteine-arginine interchange at residue 112. J Lipid Res 1990; 31: 1503–11.

    PubMed  CAS  Google Scholar 

  13. Weintraub MS, Eisenberg S, Breslow JL. Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest 1987; 80: 1571–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kesäniemi YA, Ehnholm C, Miettinen TA. Intestinal cholesterol absorption efficiency in man is related to apolipoprotein E phenotype. J Clin Invest 1987; 80: 578–81.

    Article  PubMed  Google Scholar 

  15. Davignon J, Gregg RE, Sing CF. ApoE polymorphism and atherosclerosis. Arteriosclerosis 1988; 8: 1–21.

    Article  PubMed  CAS  Google Scholar 

  16. Demant T, Bedford D, Packard CJ, Shepherd J. Influence of apolipoprotein E polymorphism on apolipoprotein B100 metabolism in normolipidemic subjects. J Clin Invest 1991; 88: 1490–501.

    Article  PubMed  CAS  Google Scholar 

  17. Hixson JE and the PDAY research Group. Apolipoprotein E polymorphisms affect atherosclerosis in young males. Arteriosclerosis Thrombosis 1991; 11: 1237–44.

    Article  CAS  Google Scholar 

  18. Luc G, Bard JM, Arveiler D et al. The impact of apolipoprotein E polymorphism on lipoproteins and risk of myocardial infarction. The ECTIM study 1994; 14: 1412–9.

    CAS  Google Scholar 

  19. Utermann G. The mysteries of Lp(a) lipoprotein. Science 1990; 246: 904–10.

    Article  Google Scholar 

  20. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs H. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma Lp(a) concentration. J Clin Invest 1992; 90: 52–60.

    Article  PubMed  CAS  Google Scholar 

  21. McLean JW, Tomlinson JE, Kuang WJ et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987; 300: 132–7.

    Article  Google Scholar 

  22. Cohen JC, Chiesa G, Hobbs HH. Sequence polymorphisms in the Apolipoprotein(a) gene. J Clin Invest 1993; 91: 1630–6.

    Article  PubMed  CAS  Google Scholar 

  23. Jauhiainen M, Koskinen P, Ehnholm C et al. Lipoprotein(a) and coronary heart disease risk: a nested case-control study of the Helsinki heart study participants. Atherosclerosis 1991; 89: 59–67.

    Article  PubMed  CAS  Google Scholar 

  24. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction. J Am Med Assoc 1993; 270: 2195–9.

    Article  CAS  Google Scholar 

  25. Wald NJ, Law M, Watt HC et al. Apolipoproteins and ischemic heart disease: implications for screening. Lancet 1994; 343: 75–9.

    Article  PubMed  CAS  Google Scholar 

  26. Bostom AG, Gagnon DR, Cupples LA et al. A prospective investigation of elevated lipoprotein (a) detected by electrophoresis and cardiovascular disease in women. Circulation 1994; 90: 1688–95.

    PubMed  CAS  Google Scholar 

  27. Schaefer EJ, Lamon-Fava S, Jenner JL et al. Lipoprotein(a) levels and risk of coronary heart disease in men. J Am Med Assoc 1994; 271: 999–1003.

    Article  CAS  Google Scholar 

  28. Parra HJ, Arveiler D, Evans AE et al. A case-control study of lipoprotein particles in two populations at contrasting risk for CHD, the ECTIM Study. Arteriosclerosis Thrombosis 1992; 12: 701–7.

    Article  CAS  Google Scholar 

  29. Dahlen GH, Guyton JR, Attar M, Farmer JA, Kautz JA, Gotto AM Jr. Association of levels of lipoprotein(a), plasma lipids, and other lipoproteins with corornary artery disease documented by angiography. Circulation 1986; 74: 758–65.

    Article  PubMed  CAS  Google Scholar 

  30. Schreiner PJ, Morrisett, Sharrett R et al. Lipoprotein(a) as a risk factor for preclinical atherosclerosis. Arteriosclerosis Thrombosis 1993; 13: 826–33.

    Article  CAS  Google Scholar 

  31. Sandholzer C, Saha N, Kark JD et al. Apo(a) isoforms predict risk for coronary heart disease. A study in six populations. Arteriosclerosis Thrombosis 1992; 12: 1214–26.

    Article  CAS  Google Scholar 

  32. Sandholzer C, Hallman DM, Saha N et al. Effects of the apolipoprotein(a) size polymorphism on the lipoprotein(a) concentration in 7 ethnic groups. Hum Genet 1991; 86: 607–14.

    Article  PubMed  CAS  Google Scholar 

  33. Edelberg JM, Pizzo SV. Lipoprotein(a): link between impaired fibrinolysis and atherosclerosis. Fibrinolysis 1991; 5: 135–43.

    Article  CAS  Google Scholar 

  34. Grainger DJ, Kirschenlohr HL, Metcalfe JC, Weissberg PL, Wade DP, Lawn RM. Proliferation of human smooth muscle cells promoted by lipoprotein(a). Science 1993; 260: 1655–8.

    Article  PubMed  CAS  Google Scholar 

  35. Brown MS, Goldstein JL. Teaching old dogma new tricks. Nature 1987; 300: 113–4.

    Article  Google Scholar 

  36. Tall AR. Plasma cholesteryl ester transfer protein. J Lipids Res 1993; 34: 1255–74.

    CAS  Google Scholar 

  37. Bhatnagar D, Durrington PN, Channon KM, Prais H, Mackness MI. Increased transfer of cholesteryl esters from high density lipoproteins to low density and very low density lipoproteins in patients with angiographic evidence of coronary artery disease. Atherosclerosis 1993; 98: 25.

    Article  PubMed  CAS  Google Scholar 

  38. Jiang XC, Agellon LB, Walsh A, Breslow JL, Tall AR. Dietary cholesterol increases transcription of the human cholesteryl ester transfer protein gene in transgenic mice: dependence on natural flanking sequences. J Clin Invest 1992; 90: 1290–5.

    Article  PubMed  CAS  Google Scholar 

  39. Drayna D, Jarnagin AS, McLean J et al. Cloning and sequencing of human cholesteryl ester transfer protein cDNA. Nature 1987; 327: 632–4.

    Article  PubMed  CAS  Google Scholar 

  40. Agellon L, Quinet E, Gillette T, Drayna D, Brown M, Tall AR. organization of the human cholesteryl ester transfer gene. Biochemistry 1990; 29: 1372–6.

    Article  PubMed  CAS  Google Scholar 

  41. Inazu A, Brown MW, Mesler CB et al. Increased high density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234–8.

    Article  PubMed  CAS  Google Scholar 

  42. Freeman DJ, Griffin BA, Holmes AP et al. Regulation of plasma HDL cholesterol and subfraction distribution by genetic and environmental factors. Arterioscler Thromb 1994; 14: 336–44.

    Article  PubMed  CAS  Google Scholar 

  43. Savolainen MJ, Hannuksela M, Seppänen S, Kervinen K, Kesäniemi YA. Increased high-density lipoprotein cholesterol concentration in alcoholics is related to low cholesteryl ester transfer protein activity. Eur J Clin Invest 1990; 20: 593–9.

    Article  PubMed  CAS  Google Scholar 

  44. Hannuksela ML, Liinamaa MJ, Kesäniemi YA, Savolainen MJ. Relation of polymorphisms in the cholesteryl ester transfer gene to transfer protein activity and plasma lipoprotein levels in alcohol drinkers. Atherosclerosis 1994; 110: 35–44.

    Article  PubMed  CAS  Google Scholar 

  45. Fumeron F, Betoulle D, Luc G et al. Alcohol intake modulates the effect of a polymorphism of the cholesteryl ester transfer protein gene on plasma High Density Lipoprotein and the risk of myocardial infarction. J Clin Invest 1995, in press.

    Google Scholar 

  46. Ernst E. Fibrinogen: an important risk factor for atherothrombotic disease. Ann Med 1994; 26: 15–22.

    Article  PubMed  CAS  Google Scholar 

  47. Chung DW, Harris JE, Davie EW. Nucleotide sequence of the 3 genes coding for human fibrinogen. In Liu CY, Chien S (eds): Thrombosis, coagulation and fibrinolysis. New York: Plenum 1990; 39–48.

    Chapter  Google Scholar 

  48. Thomas AE, Green FR, Kelleher CH et al. Variation in the promoter region of the b fibrinogen gene is associated with plasma fibrinogen levels in smokers and non smokers. Thrombosis Haemostasis 1991; 65: 487–90.

    CAS  Google Scholar 

  49. Scarabin PY, Barra L, Ricard S et al. Genetic variation at the b fibrinogen locus in relation to plasma fibrinogen concentrations and risk of myocardial infarction. Arteriosclerosis Thrombosis 1993; 13: 886–91.

    Article  CAS  Google Scholar 

  50. Fowkes FGR, Connor JM, Smith FB, Wood J, Donnan PT, Lowe GDO. Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet 1992; 339: 693–6.

    Article  PubMed  CAS  Google Scholar 

  51. Green F, Hamsten A, Blombäck M, Humphries S. The role of b-fibrinogen genotypes in detremining plasma fibrinogen levels in young survivors of myocardial infarction and healthy controls from Sweden. Thrombosis Haemostasis 1993; 70: 915–20.

    CAS  Google Scholar 

  52. Wiman B, Hamsten A. The fibrinolytic enzyme system and its role in the etiology of thromboembolic disease. Semin Thromb Hemost 1990; 16: 207–16.

    Article  PubMed  CAS  Google Scholar 

  53. Bosma PJ, van den Berg EA, Kooistra T. Human PAI-1 gene. J Biol Chem 1988; 263: 9129–41.

    PubMed  CAS  Google Scholar 

  54. Riccio A, Lund LP, Sartorio R et al. The regulatory region of the human plasminogen activator inhibitor typa-1 (PAI-1) gene. Nucleic Acids Res 1988; 16: 2805–24.

    Article  PubMed  CAS  Google Scholar 

  55. Dawson S, Hamsten A, Wiman B, Henney A, Humphries S. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of of the plasminogen activator inhibitor-1 activity. Arteriosclerosis Thrombosis 1991; 11: 183–90.

    Article  CAS  Google Scholar 

  56. Dawson S, Wiman B, Hamsten A, Green F, Humphries S, Henney A. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 gene respond differently to interleukin-1 in Hep G2 cells. J Biol Chem 1993; 268: 10739–45.

    PubMed  CAS  Google Scholar 

  57. Soubrier F, Jeunemaitre X, Rigat B, Houot AM, Cambien F, Corvol P. Similar frequencies of renin gene restriction fragment length polumorphims in hypertensive and normotensive subjects. Hypertension 1990; 16:712–7.

    PubMed  CAS  Google Scholar 

  58. Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH. Association of the renin-sodium profile with the risk of myocardial infarction in patients with hypertension. N Engl J Med 1991; 324: 1098–104.

    Article  PubMed  CAS  Google Scholar 

  59. Lynch KR, Peach M. Molecular biology of angiotensinogen. Hypertension 1991; 17: 263–9.

    PubMed  CAS  Google Scholar 

  60. Walker WG, Whelton PK, Saito H, Russell RP, Hermann J. Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulatory subjects. Hypertension 1979; 1:287–91.

    PubMed  CAS  Google Scholar 

  61. Watt GCM, Harrap SB, Foy CJW et al. Abnormalities of glucocorticoid metabolism and the renin-angiotensin system: a four corner approach to the identification of genetic determinants of blood pressure. J Hypertens 1992; 10:473–82.

    Article  PubMed  CAS  Google Scholar 

  62. Gaillard I, Clauser E, Corvol P. Structure of human angiotensinogen gene. DNA 1989; 8: 87–9.

    Article  PubMed  CAS  Google Scholar 

  63. Jeunemaitre X, Soubrier F, Kotelevtsev Y et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71:169–80.

    Article  PubMed  CAS  Google Scholar 

  64. Tiret L, Ricard S, Poirier O et al. Genetic variation at the angiotensinogen locus in relation to high blood pressure and myocardial infarction, the ECTIM study. J Hypertens. In press.

    Google Scholar 

  65. Cambien F, Soubrier F. The angiotensin-converting enzyme: molecular biology and implication of the gene polymorphism in cardiovascular diseases. In Laragh JH, Brenner BM (eds): Hypertension: Physiology, Diagnosis and Management, 2 edition. New York: Raven Press Ltd 1995.

    Google Scholar 

  66. Alhenc-Gelas F, Richard J, Courbon D, Warnet JM, Corvol P. Distribution of plasma angiotensin I-converting enzyme levels in healthy men: Relationship to environmental and hormonal parameters. J Lab Clin Med 1991; 117: 33–9.

    PubMed  CAS  Google Scholar 

  67. Soubrier F, Alhenc-Gelas F, Hubert C et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natn Acad Sci USA 1988; 85: 9386–90.

    Article  CAS  Google Scholar 

  68. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion-deletion polymorphism in the Angiotensin I. Converting Enzyme Gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–6.

    Article  PubMed  CAS  Google Scholar 

  69. Costerousse O, Allegrini J, Lopez M, Alhenc-Gelas F. Angiotensin I-converting enzyme in human peripheral mononuclear cells: main expression in T lymphocytes under the influence of a genetic polymorphism. Biochem J 1993; 290: 33–40.

    PubMed  CAS  Google Scholar 

  70. Jeunemaitre X, Lifton RP, Hunt SC, Williams RR, Lalouel JM. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nature Genet 1992; 1: 72–5.

    Article  PubMed  CAS  Google Scholar 

  71. Cambien, F, Poirier O, Lecerf L et al. Deletion polymorphism at the angiotensin-converting enzyme gene is a potent risk factor for myocardial infarction. Nature 1992; 359: 641–4.

    Article  PubMed  CAS  Google Scholar 

  72. Tiret L, Kee F, Poirier O et al. Deletion polymorphism in the angiotensin converting enzyme gene is associated with a parental history of myocardial infarction. Lancet 1993; 341: 991–2.

    Article  PubMed  CAS  Google Scholar 

  73. Ludwig EH, Corneli PS, Anderson JL, Marshall HW, Lalouel JM, Ward RH. The ACE insertion/deletion polymorphism is independently associated with myocardial infarction and body mass index but not with stenosis. Circulation 1993; 88(Suppl): 1–364.

    Google Scholar 

  74. Bonithon-Kopp C, Ducimetière P, Touboul PJ et al. Plasma angiotensin-converting enzyme activity and carotid wall thickening. Circulation 1994; 89: 952–4.

    PubMed  CAS  Google Scholar 

  75. Schunkert H, Hense HW, Holmer SR et al. Association between a polymorphism of the angiotensin-converting enzyme gene and left ventricular hypertrophy. N Engl J Med 1994; 330: 1634–8.

    Article  PubMed  CAS  Google Scholar 

  76. Raynolds MV, Bristow MR, Bush EW et al. Angiotensin-converting enzyme DD genotype in patients with ischaemic or idiopathic cardimyopathy. Lancet 1993; 342: 1073–5.

    Article  PubMed  CAS  Google Scholar 

  77. Marian AJ, Yu QT, Workman R, Greve G, Roberts R. Angiotensin-converting enzyme polymorphism in hypertrophic myocardiopathy and sudden cardiac death. Lancet 1993; 342: 1085–6.

    Article  PubMed  CAS  Google Scholar 

  78. Schächter F, Faure-Delanef L, Guénot F et al. Genetic associations with human longevity at the ApoE and ACE loci. Nature Genetics 1994; 6: 29–32.

    Article  PubMed  Google Scholar 

  79. Tiret L, Rigat B, Visvikis S et al. Evidence, from combined segregation an linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE. Am J Hum Genet 1992; 51: 197–205.

    PubMed  CAS  Google Scholar 

  80. Cambien F, Costerousse O, Tiret L et al. plasma level and gene polymorphism of angiotensin-converting enzyme in relation to myocardial infarction. Circulation 1994; 90: 669–76.

    PubMed  CAS  Google Scholar 

  81. Timmermans PBMWM, Wong PC, Chiu AT et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45: 205–25.

    PubMed  CAS  Google Scholar 

  82. Takayanagi R, Ohnaka K, Sakai Y et al. Molecular cloning, sequence analysis and expression of a cDNA encoding human type-1 angiotensin II receptor. Biochem Biophys Res Commun 1992; 183: 910–6.

    Article  PubMed  CAS  Google Scholar 

  83. Bonnardeaux A, Davies A, Jeunemaitre X et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994: 24: 63–9.

    PubMed  CAS  Google Scholar 

  84. Tiret L, Bonnardeaux A, Poirier O et al. Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on the risk of myocardial infarction. Lancet 1994; 344: 910–3.

    Article  PubMed  CAS  Google Scholar 

  85. The WHO MONICA Project. A worldwide monitoring system for cardiovascular diseases. Wld Hlth Statist. Annu 1989; 27–149.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cambien, F. et al. (1996). The genetic contribution to the onset of acute coronary heart disease. In: Willich, S.N., Muller, J.E. (eds) Triggering of Acute Coronary Syndromes. Developments in Cardiovascular Medicine, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1577-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1577-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7205-2

  • Online ISBN: 978-94-009-1577-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics