Skip to main content

Gene therapy for the vulnerable atherosclerotic plaque

  • Chapter
Triggering of Acute Coronary Syndromes

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 170))

  • 59 Accesses

Abstract

Rupture of coronary atherosclerotic plaque and subsequent formation of an occlusive intracoronary thrombus have been recognized as the major events precipitating acute coronary syndromes and, therefore, represent the main foci of preventive strategies [1–6]. The vulnerable plaque — i.e., the one which is most prone to rupture and cause unstable angina, myocardial infarction, or sudden cardiac death — is smaller in size [7], richer in lipids [1,2], and more infiltrated with macrophages [2,3,8–10] than the stable, fibromuscular plaque. Therefore, it is assumed that therapeutic interventions aimed at lowering the lipid and/or macrophage pools stored in the plaque may “stabilize” the plaque and, hence, reduce the incidence of plaque rupture [2,4–6]. Indeed, cholesterol-lowering trials have yielded a significant reduction in acute cardiac events [11–18]. Since thrombus formation is another important factor in the conversion of chronic to acute coronary events, antithrombotic therapies may further prevent acute coronary syndromes by altering the consequences of plaque rupture [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ichardson PD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 1989; 2: 941–4.

    Article  Google Scholar 

  2. Falk E. Why do plaques rupture? Circulation 1992; 86(Suppl III): 30–42.

    Google Scholar 

  3. Lendon CL, Davies MJ, Born GVR, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991; 87: 87–90.

    Article  PubMed  CAS  Google Scholar 

  4. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (Second part). N Engl J Med 1992; 326: 310–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–9.

    Article  PubMed  CAS  Google Scholar 

  6. MacIsaac AI, Thomas JD, Topol EJ. Toward the quiescent coronary plaque. J Am Coll Cardiol 1993; 22: 1228–41.

    Article  PubMed  CAS  Google Scholar 

  7. Nobuyoshi M, Tanaka M, Nosaka H et al. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 1991; 18: 904–10.

    Article  PubMed  CAS  Google Scholar 

  8. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimai rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36–44.

    PubMed  Google Scholar 

  9. Alexander RW. Inflammation and coronary artery disease. N Engl J Med 1994; 331: 468–9.

    Article  PubMed  CAS  Google Scholar 

  10. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994; 90: 775–8.

    PubMed  CAS  Google Scholar 

  11. Kane JP, Malloy MJ, Ports TA, Phillips NR, Diehl JC, Havel RJ. Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens. J Am Med Assoc 1990; 264: 3007–12.

    Article  CAS  Google Scholar 

  12. Brown G, Albers JJ, Fisher LD et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–98.

    Article  PubMed  CAS  Google Scholar 

  13. Ornish D, Brown SE, Scherwitz LW et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 1990; 336: 129–33.

    Article  PubMed  CAS  Google Scholar 

  14. Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco M, Azen SP, Cashin-Hemphill I. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. J Am Med Assoc 1987; 257: 3233–40.

    Article  CAS  Google Scholar 

  15. Brensike JF, Levy RI, Kesley SF et al. Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation 1984; 69: 313–24.

    Article  PubMed  CAS  Google Scholar 

  16. Buchwald H, Varco RL, Matts JP et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia: report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 1990; 323: 946–55.

    Article  PubMed  CAS  Google Scholar 

  17. Cashin-Hemphill L, Mack WJ, Pagoda JM, Sanmarco ME, Azen SP, Blankenhorn DH. Beneficial effects of colestipol-niacin on coronary atherosclerosis. J Am Med Assoc 1990; 264: 3013–7.

    Article  CAS  Google Scholar 

  18. Watts GF, Lewis B, Brunt JN et al. Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 1992; 339: 563–9.

    Article  PubMed  CAS  Google Scholar 

  19. Badimon JJ, Fuster V, Chesebro JH, Badimon L. Coronary atherosclerosis. A multifactorial disease. Circulation 1993; 87(Suppl II): II-3–II-16.

    Google Scholar 

  20. Badimon JJ, Badimon L, Galvez A, Dische R, Fuster V. High density lipoprotein plasma fraction inhibit aortic fatty streaks in cholesterol-fed rabbits. Lab Invest 1989; 60: 455–61.

    PubMed  CAS  Google Scholar 

  21. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990; 85: 1234–41.

    Article  PubMed  CAS  Google Scholar 

  22. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232: 34–47.

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein JL, Brown MS. Familial hypercholesterolemia. In Scriver CR, Beaudet AL, Sly WS, Valle D (eds): The metabolic basis of inherited disease. New York: McGraw-Hill 1989; 1215–50.

    Google Scholar 

  24. Bilheimer DW, Goldstein JL, Grundy SM, Starzl TE, Brown MS. Liver transplantation to provide low-density-lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N Engl J Med 1984; 311: 1658–64.

    Article  PubMed  CAS  Google Scholar 

  25. Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med 1983; 309: 288–96.

    Article  PubMed  CAS  Google Scholar 

  26. Schneider MD, French BA. The advent of adenovirus. Gene therapy for cardiovascular disease. Circulation 1993; 88: 1937–42.

    PubMed  CAS  Google Scholar 

  27. Wilson JM, Chowdhury NR, Grossman M et al. Temporary amelioration of hyperlipidemia in low density lipoprotein receptor-deficient rabbits transplanted with genetically modified hepatocytes. Proc Natl Acad Sci USA 1990; 87: 8437–41.

    Article  PubMed  CAS  Google Scholar 

  28. Chowdhury JR, Grossman M, Gupta S, Chowdhury NR, Baker JR, Wilson JM. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science 1991; 254: 1802–5.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson JM. Clinical protocol: ex vivo gene therapy of familial hypercholesterolemia. Hum Gene Ther 1992; 3: 179–222.

    Article  PubMed  CAS  Google Scholar 

  30. Grossman M, Raper SE, Wilson JM. Transplantation of genetically-modified autologous hepatocytes in non-human primates. Hum Gene Ther 1992; 3: 501–10.

    Article  PubMed  CAS  Google Scholar 

  31. Grossman M, Raper SE, Kozarsky K et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nature Genet 1994; 6: 335–41.

    Article  PubMed  CAS  Google Scholar 

  32. Brown MS, Goldstein JL, Havel RJ, Steinberg D. Gene therapy for cholesterol. Nature Genet 1994; 7: 349–50.

    Article  PubMed  CAS  Google Scholar 

  33. Dichek DA, Bratthauer GL, Beg ZH et al. Retroviral vector-mediated in vivo expression of low-density-lipoprotein receptors in the Watanabe heritable hyperlipidemic rabbit. Somat Cell Mol Genet 1991; 17: 287–301.

    Article  PubMed  CAS  Google Scholar 

  34. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–42.

    PubMed  CAS  Google Scholar 

  35. Jaffe HA, Danel C, Longenecker G et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nature Genet 1992; 1: 372–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993; 92: 883–93.

    Article  PubMed  CAS  Google Scholar 

  37. Herz J, Gerard RD. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 1993; 90: 2812–6.

    Article  PubMed  CAS  Google Scholar 

  38. Kozarsky KF, McKinley DR, Austin LL, Raper SE, Stratford-Perricaudet LD, Wilson JM. In vivo correction of low-density lipoprotein receptor deficiency in the Watanabe heritable hyperlipidemic rabbit with recombinant adenoviruses. J Biol Chem 1994; 269: 13695–702.

    PubMed  CAS  Google Scholar 

  39. Yang Y, Nunes FA, Berencsi K, Furth EE, Gönczöl E, Wilson JM. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–11.

    Article  PubMed  CAS  Google Scholar 

  40. Yang Y, Nunes FA, Berencsi K, Gönczöl E, Engelhardt JF, Wilson JM. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet 1994; 7: 362–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wilson JM, Grossman M, Wu CH, Chowdhury NR, Wu GY, Chowdhury JR. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low-density lipoprotein receptor-deficient rabbits. J Biol Chem 1992; 267: 963–7.

    PubMed  CAS  Google Scholar 

  42. Cristiano R, Smith L, Kay M, Brinkley B, Woo S. Hepatic gene therapy: Efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc Natl Acad Sci USA 1993; 90: 11548–52.

    Article  PubMed  CAS  Google Scholar 

  43. Castelli WP, Doyle JT, Gordon T et al. HDL cholesterol and other lipids in coronary heart disease: the cooperative lipoprotein phenotyping study. Circulation 1977; 55: 767–72.

    PubMed  CAS  Google Scholar 

  44. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease: the Framingham study. Am J Med 1977; 62: 707–14.

    Article  PubMed  CAS  Google Scholar 

  45. Heiss G, Johnson NJ, Reiland S, Davis CE, Tyroler HA. The Lipid Research Clinics Program Prevalence Study: Summary. Circulation 1980; 62(Suppl IV): IV-116–IV-36.

    Google Scholar 

  46. Frick MH, Elo O, Haapa K et al. Helsinki heart study primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45.

    Article  PubMed  CAS  Google Scholar 

  47. Reichl D, Miller NE. Pathophysiology of reverse cholesterol transport: insights from inherited disorders of lipoprotein metabolism. Arteriosclerosis 1989; 9: 785–97.

    Article  PubMed  CAS  Google Scholar 

  48. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherog-enesis in transgenic mice by human apolipoprotein A1. Nature 1991; 353: 265–7.

    Article  PubMed  CAS  Google Scholar 

  49. Pászty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein A1 transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 1994; 94: 899–903.

    Article  PubMed  Google Scholar 

  50. Kopfler WP, Willard M, Betz T, Willard JE, Gerard RD, Meidell RS. Adenovirus-mediated transfer of a gene encoding human apolipoprotein A-I into normal mice increases circulating high-density lipoprotein cholesterol. Circulation 1994; 90: 1319–27.

    PubMed  CAS  Google Scholar 

  51. Welgus HG, Campbell EJ, Cury JD et al. Neutral metalloproteinases produced by human mononuclear phagocytes. J Clin Invest 1990; 86: 1496–502.

    Article  PubMed  CAS  Google Scholar 

  52. Sessa WC, Harrison JK, Barber CM et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 1992; 267: 15274–6.

    PubMed  CAS  Google Scholar 

  53. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–12.

    Article  PubMed  CAS  Google Scholar 

  54. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7.

    Article  PubMed  CAS  Google Scholar 

  55. Zeiher AM, Schray-Utz B, Busse R. Nitric oxide modulates monocyte chemoattractant protein 1 in human endothelial cells: implications for the pathogenesis of atherosclerosis. Circulation 1993; 88(Suppl I): 1–367 (Abstract).

    Google Scholar 

  56. von der Leyen H, Gibbons GH, Morishita R et al. In vivo gene transfer of nitric oxide synthase inhibits neo-intima formation in injured rat carotid arteries. Eur Heart J 1994; 15: 426 (Abstract).

    Google Scholar 

  57. Chen S-J, Wilson JM, Muller DWM. Adenovirus-mediated gene transfer of soluble vascular cell adhesion molecule to porcine interposition vein grafts. Circulation 1994; 89: 1922–8.

    PubMed  CAS  Google Scholar 

  58. Galis ZS, Muszynski M, Sukhova GK et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extra-cellular matrix digestion. Circ Res 1994; 75: 181–9.

    PubMed  CAS  Google Scholar 

  59. Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991; 5: 2145–54.

    PubMed  CAS  Google Scholar 

  60. DeWood MA, Stifter WF, Simpson CS et al. Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 1986; 315: 417–23.

    Article  PubMed  CAS  Google Scholar 

  61. DeWood MA, Spores J, Notske R et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980; 303: 897–902.

    Article  PubMed  CAS  Google Scholar 

  62. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death: autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71: 699–708.

    Article  PubMed  CAS  Google Scholar 

  63. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (First part). N Engl J Med 1992; 326: 242–50.

    Article  PubMed  CAS  Google Scholar 

  64. Steering Committee of the Physicians’ Health Study Research Group. Final report on the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med 1989; 321: 129–35.

    Article  Google Scholar 

  65. Juul-Möller S, Edvardsson N, Jahnmatz B et al. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. Lancet 1992; 340: 1421–5.

    Article  PubMed  Google Scholar 

  66. March KL, Wilensky RL, Hathaway DR. Novel drug and device combinations for targeted prevention of restenosis. Cardio Intervention 1992; 2: 11–26.

    Google Scholar 

  67. Riessen R, Isner JM. Prospects for site-specific delivery of pharmacologic and molecular therapies. J Am Coll Cardiol 1994; 23: 1234–44.

    Article  PubMed  CAS  Google Scholar 

  68. Gimbrone M. Vascular endothelium: nature’s blood container. In Gimbrone MA (ed): Vascular Endothelium in Hemostasis and Thrombosis. New York: Churchill Livingstone 1986; 1–13.

    Google Scholar 

  69. Quax PHA, van den Hoogen CM, Verheijen JH et al. Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo. J Biol Chem 1990; 265: 15560–3.

    PubMed  CAS  Google Scholar 

  70. Loscalzo J, Braunwald E. Tissue plasminogen activator. N Engl J Med 1988; 319: 925–31.

    Article  PubMed  CAS  Google Scholar 

  71. Dichek DA. Interventional approaches to the introduction of genetic material into the vasculature. In Topol EJ (ed): Textbook of Interventional Cardiology. Philadelphia: Saunders 1993; 989–1005.

    Google Scholar 

  72. Nabel EJ, Plautz G, Boyce DM, Stanley JC, Nabel GJ. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 1989; 244: 1342–4.

    Article  PubMed  CAS  Google Scholar 

  73. Plautz G, Nabel EG, Nabel GJ. Introduction of vascular smooth muscle cells expressing recombinant genes in vivo. Circulation 1991; 83: 578–83.

    PubMed  CAS  Google Scholar 

  74. Sutton JM, Ellis SG, Roubin GS et al. Major clinical events after coronary stenting. The Multicenter Registry of Acute and Elective Gianturco-Roubin Stent Placement. Circulation 1994; 89: 1126–37.

    PubMed  CAS  Google Scholar 

  75. Wilson JM, Birinyi LK, Salomon RN, Libby P, Callow AD, Mulligan RC. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 1989; 244: 1344–6.

    Article  PubMed  CAS  Google Scholar 

  76. Kadletz M, Magometschnigg H, Minar E et al. Implantation of in vitro endothelialized polytetrafluoroethylene grafts in human beings. A preliminary report. J Thorac Cardiovasc Surg 1992; 104: 736–42.

    PubMed  CAS  Google Scholar 

  77. Leon MB, Wong SC. Intracoronary stents. A breakthrough technology or just another small step? Circulation 1994; 89: 1323–7.

    PubMed  CAS  Google Scholar 

  78. van der Giessen WJ, Serruys PW, Visser WJ et al. Endothelialization of intravascular stents. J Intervent Cardiol 1988; 1: 109–20.

    Article  Google Scholar 

  79. Dichek DA, Neville RF, Zwiebel JA, Freeman SM, Leon MB, Anderson WF. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989; 80: 1347–53.

    Article  PubMed  CAS  Google Scholar 

  80. Flugelman MY, Virmani R, Leon MB, Bowman RL, Dichek DA. Genetically engineered endothelial cells remain adherent and viable after stent deployment and exposure to flow in vitro. Circ Res 1992; 70: 348–54.

    PubMed  CAS  Google Scholar 

  81. Fitzgibbon GM, Leach AJ, Kafka HP, Keon WJ. Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol 1991; 17: 1075–80.

    Article  PubMed  CAS  Google Scholar 

  82. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy-II: maintenance of vascular graft or arterial patency by antiplatelet therapy. Br Med J 1994; 308: 159–68.

    Google Scholar 

  83. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 1990; 249: 1285–8.

    Article  PubMed  CAS  Google Scholar 

  84. Leclerc G, Isner JM. Percutaneous gene therapy for cardiovascular disease. In Topol EJ (ed): Textbook of Interventional Cardiology. Philadelphia: Saunders 1993; 1019–1029.

    Google Scholar 

  85. Lim CS, Chapman GD, Gammon JB et al. Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation 1991; 83: 578–83.

    Google Scholar 

  86. Barbee RW, Stapleton DD, Perrry BD et al. Prior arterial injury enhances luciferase expression following in vivo gene transfer. Biochem Biophys Res Commun 1993; 190: 70–8.

    Article  PubMed  CAS  Google Scholar 

  87. Lemarchand P, Jones M, Yamada I, Crystal RG. In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ Res 1993; 72: 1132–8.

    PubMed  CAS  Google Scholar 

  88. Guzman R, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient and selective adenovirus-mediated gene transfer into vascular neointima. Circulation 1993; 88: 2838–48.

    PubMed  CAS  Google Scholar 

  89. Lee SW, Trapnell BC, Rade JJ, Virmani R, Dichek DA. In vivo adenoviral vector-mediated gene transfer into balloon-injured rat carotid arteries. Circ Res 1993; 73: 797–807.

    PubMed  CAS  Google Scholar 

  90. Leclerc G, Gal D, Takeshita S, Nikol S, Weir L, Isner JM. Percutaneous arterial gene transfer in a rabbit model. Efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest 1992; 90: 936–44.

    Article  PubMed  CAS  Google Scholar 

  91. Takeshita S, Gal D, Leclerc G et al. Increased gene expression after liposome-mediated arterial gene transfer associated with intimai smooth muscle cell proliferation. In vitro and in vivo findings in a rabbit model of vascular injury. J Clin Invest 1994; 93: 652–61.

    Article  PubMed  CAS  Google Scholar 

  92. Flugelman MY, Jaklitsch MT, Newman KD, Casscells W, Brathauer GL, Dichek DA. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 1992; 85: 1110–7.

    PubMed  CAS  Google Scholar 

  93. Riessen R, Rahimizadeh H, Takeshita S, Gal D, Barry JJ, Isner JM. Successful vascular gene transfer using a hydrogel coated balloon angioplasty catheter. Hum Gene Ther 1993; 4: 749–58.

    Article  PubMed  CAS  Google Scholar 

  94. Lee SW, Kahn ML, Dichek DA. Control of clot lysis by gene transfer. Trends Cardiovasc Med 1993; 3: 61–6.

    Article  PubMed  CAS  Google Scholar 

  95. Willard JE, Landau C, Glamann DB et al. Genetic modification of the vessel wall. Comparison of surgical and catheter-based techniques for delivery of recombinant adenovirus. Circulation 1994; 89: 2190–7.

    PubMed  CAS  Google Scholar 

  96. Rome JJ, Shayani V, Flugelman MY et al. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall. Modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Arterioscler Thromb 1994; 14: 148–61.

    Article  PubMed  CAS  Google Scholar 

  97. Ohno T, Gordon D, San H et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 1994; 265: 781–4.

    Article  PubMed  CAS  Google Scholar 

  98. Steg PG, Feldman LJ, Scoazec J-Y et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of an adenoviral vector. Circulation 1994; 90: 1648–56.

    PubMed  CAS  Google Scholar 

  99. Quantin B, Stratford-Perricaudet LD, Tajbakhsh S, Mandel J-L. Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci USA 1992; 89: 2581–4.

    Article  PubMed  CAS  Google Scholar 

  100. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 1992; 90: 626–30.

    Article  PubMed  CAS  Google Scholar 

  101. Rosenfeld MA, Yoshimura K, Trapnell BC et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 1992; 68: 143–55.

    Article  PubMed  CAS  Google Scholar 

  102. Akli S, Caillaud C, Vigne E et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nature Genet 1993; 3: 224–8.

    Article  PubMed  CAS  Google Scholar 

  103. Engelhardt JF, Yang Y, Stratford-Perricaudet LD et al. Direct gene transfer of human bronchial epithelia of xenografts with El-deleted adenoviruses. Nature Genet 1993; 4: 27–34.

    Article  PubMed  CAS  Google Scholar 

  104. Gao L, Wagner E, Cotten M et al. Direct in vivo gene transfer to airway epithelium employing adenovirus-polylysine-DNA complexes. Hum Gene Ther 1994; 4: 17–24.

    Article  CAS  Google Scholar 

  105. Le Gal La Salle G, Robert JJ, Berrard S et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 1993; 259: 988–90.

    Article  PubMed  Google Scholar 

  106. Mastrangeli A, Danel C, Rosenfeld MA et al. Diversity of airway epithelial cell targets for in vivo recombinant adenovirus-mediated gene transfer. J Clin Invest 1993; 91: 225–34.

    Article  PubMed  CAS  Google Scholar 

  107. Ragot T, Vincent N, Chafey P et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 1993; 361: 647–50.

    Article  PubMed  CAS  Google Scholar 

  108. Rosenfeld MA, Chu C-S, Seth P et al. Gene transfer to freshly isolated human respiratory epithelial cells in vitro using a replication-deficient adenovirus containing the human cystic fibrosis transmembrane conductance regulator cDNA. Human Gene Ther 1994; 5: 331–42.

    Article  CAS  Google Scholar 

  109. Vincent N, Ragot T, Gilgenkrantz H et al. Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nature Genet 1993; 5: 130–4.

    Article  PubMed  CAS  Google Scholar 

  110. March KL, Gradus-Pizlo I, Wilensky RL, Yei S, Trapnell BC. Cardiovascular gene therapy using adenoviral vectors: distant transduction following local delivery using a porous balloon catheter. J Am Coll Cardiol 1994; 23: 177A (Abstract).

    Google Scholar 

  111. Dichek DA, Nussbaum O, Degen SJF, Anderson WF. Enhancement of the fibrinolytic activity of sheep endothelial cells by retroviral vector-mediated gene transfer. Blood 1991; 77: 533–41.

    PubMed  CAS  Google Scholar 

  112. Lee SW, Kahn ML, Dichek DA. Expression of an anchored urokinase in the apical endothelial cell membrane. J Biol Chem 1992; 267: 13020–7.

    PubMed  CAS  Google Scholar 

  113. Eskin SG, Meideil RS, McNatt J et al. Protective effect of mutant tissue plasminogen activator expressed from endothelial cells seeded on implanted stents. Circulation 1991; 84: II–399 (Abstract).

    Google Scholar 

  114. Asahara T, Bauters C, Pastore C et al. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimai hyperplasia in balloon-injured rat carotid artery. Circulation 1994; 90: 1–296 (Abstract).

    Google Scholar 

  115. Takeshita S, Zheng LP, Asahara T et al. In vivo evidence of enhanced angiogenesis following direct arterial gene transfer of the plasmid encoding vascular endothelial growth factor. Proc Natl Acad Sci USA. In press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Feldman, L.J., Isner, J.M. (1996). Gene therapy for the vulnerable atherosclerotic plaque. In: Willich, S.N., Muller, J.E. (eds) Triggering of Acute Coronary Syndromes. Developments in Cardiovascular Medicine, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1577-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1577-0_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7205-2

  • Online ISBN: 978-94-009-1577-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics