Skip to main content

The role of thrombosis in acute coronary heart disease

  • Chapter
Triggering of Acute Coronary Syndromes

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 170))

  • 60 Accesses

Abstract

The most frequently recognized cause of ischemic syndromes is atherosclerotic disease. Atherosclerotic lesions in the coronary tree may cause stable syndromes of ischemia by means of direct luminal arterial narrowing (stable lesions) or unstable ischemic syndromes by inducing acute intraluminal thrombus formation (unstable lesions). Rupture of the surface of an atherosclerotic plaque with subsequent exposure of thrombogenic plaque components to flowing blood is the key event to initiate thrombosis within coronary arteries. Clinical consequences of intracoronary thrombus depend on many factors such as the degree and acuteness of blood flow obstruction, the duration of decreased perfusion and the relative myocardial oxygen demand at the time of atherosclerotic plaque rupture. Therefore, the amount and duration of intracoronary thrombus play a major pathophysiologic role in acute ischemic syndromes. In general, acute myocardial infarction is associated with larger and more persistent thrombus than is unstable angina. Superimposed vasospasm and presence of adequate collateral circulation may also contribute to determine the clinical outcome of the ischemic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herrick JB. Clinical features of sudden obstruction of the coronary arteries. J Am Med Assoc 1912; 59: 2015–20.

    Google Scholar 

  2. Constantinides P. Plaque fissures in human coronary thrombosis. J Athero Res 1966; 6: 1–7.

    Google Scholar 

  3. Roberts WC, Buja LM. The frequency and significance of coronary arterial thrombi and other observations in fatal acute myocardial infarction: a study of 107 necropsy patients. Am J Med 1972; 52: 425–43.

    PubMed  CAS  Google Scholar 

  4. Ehrlich JC, Shinohara Y. Low incidence of coronary thrombosis in myocardial infarction. Arch Pathol 1964; 78: 432–45.

    PubMed  CAS  Google Scholar 

  5. Erhardt LR, Lundman T, Mellstedt H. Incorporation of 125I-labelled fibrinogen into coronary arterial thrombi in acute myocardial infarction in man. Lancet 1973; 1: 387–90.

    PubMed  CAS  Google Scholar 

  6. Walston A, Hackel DB, Estes EH. Acute coronary occlusion and the “power failure” syndrome. Am Heart J 1970; 79: 613–9.

    PubMed  CAS  Google Scholar 

  7. Baroldi G, Radice F, Schmid G, Leone A. Morphology of acute myocardial infarction in relation to coronary thrombosis. Am Heart J 1974; 87: 65–75.

    PubMed  CAS  Google Scholar 

  8. Chandler AB, Chapman L, Erhardt LR, Roberts WC, Schwartz CJ, Sinapius D, Spain DM, Sherry S, Ness PM, Simon TL. Coronary thrombosis in myocardial infarction. Am J Cardiol 1974; 34: 823–33.

    PubMed  CAS  Google Scholar 

  9. DeWood MA, Spores J, Notske R et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980; 303: 897–902.

    PubMed  CAS  Google Scholar 

  10. Davies MJ, Thomas AC. Plaque Assuring: the cause of acute myocardial infarction, sudden ischemic death and crescendo angina. Br Heart J 1985; 53: 363–73.

    PubMed  CAS  Google Scholar 

  11. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death: autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71: 699–708.

    PubMed  CAS  Google Scholar 

  12. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983; 50: 127–34.

    PubMed  CAS  Google Scholar 

  13. Forrester JS, Litvack F, Grundfest W, Hickey A. A perspective of coronary disease seen through the arteries of living man. Circulation 1987; 75: 505–13.

    PubMed  CAS  Google Scholar 

  14. Mizuno K, Satomura K, Miyamoto A et al. Angioscopic evaluation of the character of coronary thrombus in acute coronary syndromes. N Engl J Med 1992; 326: 287–91.

    PubMed  CAS  Google Scholar 

  15. Ambrose JA, Winters SL, Arora RR et al. Coronary angiographic morphology in myocardial infarction: a link between the pathogenesis of unstable angina and myocardial infarction. J Am Coll Cardiol 1985; 6: 1233–8.

    PubMed  CAS  Google Scholar 

  16. Bresnahan DR, Devious JL, Holmes DR Jr, Smith HC. Angiographie ocurrence and clinical correlates of intraluminal coronary artery thrombus: role of unstable angina. J Am Coll Cardiol 1985; 6: 285–9.

    PubMed  CAS  Google Scholar 

  17. Coeley MJ, DiSciascio G, Rehr RB, Vetroves GW. Angiographie observations and clinical relevance of coronary thrombus in unstable angina pectoris. Am J Cardiol 1989; 63: 108E– 13E.

    Google Scholar 

  18. Freeman MR, Willians AE, Chisholm RJ, Armstrong PW. Intracoronary thrombus and complex morphology in unstable angina. Relation to timing of angiography and in-hospital cardiac events. Circulation 1989; 80: 17–23.

    PubMed  CAS  Google Scholar 

  19. Sherman CT, Litvack F, Grundfest W et al. Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med 1986; 315: 913–9.

    PubMed  CAS  Google Scholar 

  20. Ramee SR, White CJ, Collins TJ, Mesa JE, Murgo JP. Percutaneous angioscopy during coronary angiosplasty using a steerable microangioscope. J Am Coll Cradiol 1991; 17: 100–5.

    CAS  Google Scholar 

  21. Kruskal JB, Commerford PJ, Franks JJ, Kirsch RE. Fibrin and fibrinogen-related antigens in patients with stable and unstable coronary artery disease. N Engl J Med 1987; 317: 1361–5.

    PubMed  CAS  Google Scholar 

  22. Fitzgerald DJ, Roy L, Catella F, Fitzgerald GA. Platelet activation in unstable coronary disease. N Engl J Med 1986; 315: 983–8.

    PubMed  CAS  Google Scholar 

  23. Ardissino D, Gamba MG, Merlini PA et al. Fibrinopeptide A excretion in urine: a marker of the cumulative thrombin activity in stable versus unstable angina pectoris. Am J Cardiol 1991; 68: 58B–63B.

    PubMed  CAS  Google Scholar 

  24. Kragel AH, Gertz SD, Roberts WC. Morphologic comparison of frequency and types of acute lesions in the major epicardial coronary arteries in unstable angina pectoris, sudden coronary death and acute myocardial infarction. J Am Coll Cardiol 1991; 18: 801–8.

    PubMed  CAS  Google Scholar 

  25. Capone G, Wolf NM, Meyer B, Meister SG. Frequency of intracoronary filling defects by angiography in angina pectoris at rest. Am J Cardiol 1985; 56: 403–6.

    PubMed  CAS  Google Scholar 

  26. Fuster V. Lewis A Conner Memorial Lecture. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation 1994; 90: 2126–46.

    CAS  Google Scholar 

  27. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326:(part I) 242–50, (part II) 310–8.

    PubMed  CAS  Google Scholar 

  28. A report from the Committe of Vascular Lesions of the Council of Atherosclerosis, American Heart Association. Definitions of advanced types of atherosclerotic lesions and a historical classification of atherosclerosis. Circulation. In press.

    Google Scholar 

  29. MacIsaac AI, Thomas JD, Topol EJ. Toward the quiescent coronary plaque. J Am Coll Cardiol 1993; 22: 1228–41.

    PubMed  CAS  Google Scholar 

  30. Cheng GC, Loree HM, Kamm RD et al. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 1993; 87: 1179–87.

    PubMed  CAS  Google Scholar 

  31. Kragel AH, Reddy SG, Wittes JT, Roberts WC. Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronaries in acute myocardial infarction and sudden coronary death. Circulation 1989; 80: 1747–56.

    PubMed  CAS  Google Scholar 

  32. Richardson RD, Davies MJ, Born GVR. Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 1989; 2: 941–4.

    PubMed  CAS  Google Scholar 

  33. van der Wall AC, Becker AE, van der Loos CM, Das PK. Site of intimai rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36–44.

    Google Scholar 

  34. Mitchinson MT, Ball RY. Macrophages and atherogenesis. Lancet 1987; 2: 146–9.

    PubMed  CAS  Google Scholar 

  35. Henney AM, Wakeley PR, Davies MJ et al. Location of stromelysin gene in atherosclerotic plaques using in situ hybridization. Proc Natl Acad Sci USA 1991; 88: 8154–58.

    PubMed  CAS  Google Scholar 

  36. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493–503.

    PubMed  CAS  Google Scholar 

  37. Shah PK, Falk E, Badimon JJ et al. Human monocyte-derived macrophages express collagenase and induce collagen breakdown in atherosclerotic fibrous caps: implication for plaque ruprure. Circulation 1993; 88(Suppl I): 254 (Abstract).

    Google Scholar 

  38. Kaartinen M, Penttilä A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994; 90:1669–78.

    PubMed  CAS  Google Scholar 

  39. Moreno P, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994; 90: 775–8.

    PubMed  CAS  Google Scholar 

  40. Ambrose JA. Plaque disruption and the acute coronary syndromes of unstable angina and myocardial infarction: If the substrate is similar, why is the clinical presentation different? J Am Coll Cardiol 1992; 19: 1653–8.

    PubMed  CAS  Google Scholar 

  41. Giroud D, Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992; 69: 729–32.

    PubMed  CAS  Google Scholar 

  42. Badimon L, Badimon JJ, Lassila R, Heras M, Chesebro JH, Fuster V. Thrombin regulation of platelet interaction with damage vessel wall and isolated collagen type I at arterial flow conditions in a porcine model: effects of hirudin, heparin and calcium chelation. Blood 1991; 78: 423–34.

    PubMed  CAS  Google Scholar 

  43. Ambrose JA, Tannenbaum MA, Alexopolous D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56–62.

    PubMed  CAS  Google Scholar 

  44. Littke WC, Constantinescu M, Applequte RJ et al. Can coronary angiography predict the site of subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988; 76: 1157–66.

    Google Scholar 

  45. Nobuyoshi M, Tanaka M, Mosaka H et al. Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 1991; 18: 904–10.

    PubMed  CAS  Google Scholar 

  46. Chesebro JH, Webster MWI, Zoldhelyi P, Roche PC, Badimon L, Badimon JJ. Antithrombotic therapy and progression of coronary artery disease. Circulation 1992; 86(Suppl III): III-100-III-11.

    Google Scholar 

  47. Dacanay S, Kennedy HL, Uretz E, Parrillo JE, Klein LW. Morphological and quantitative angiographic analyses of progression of coronary stenoses. A comparison of Q-wave and non-Q-wave myocardial infarction. Circulation 1994; 90: 1739–46.

    PubMed  CAS  Google Scholar 

  48. Lam JYT, Chesebro JH, Steel PM, Dewanjee MK, Badimon L, Fuster V. Deep arterial injury during experimental angioplasty: relation to positive 111In-labeled platelet seintigram, quantitative platelet deposition and mural thrombosis. J Am Coll Cardiol 1986; 8: 1380–6.

    PubMed  CAS  Google Scholar 

  49. Badimon L, Badimon JJ, Galvez A, Chesebro JH, Fuster V. Influence of arterial damage and wall shear rate on platelet deposition: ex vivo study in a swine model. Arteriosclerosis 1986; 6: 312–20.

    PubMed  CAS  Google Scholar 

  50. Fernandez-Ortiz A, Badimon JJ, Falk E et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: Implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23: 1562–9.

    PubMed  CAS  Google Scholar 

  51. Wilcox JN. Thrombotic mechanisms in atherosclerosis. Cor Art Dis 1994; 5: 223–9.

    CAS  Google Scholar 

  52. Moise A, Lesperance J, Theroux P, Taeymans Y, Goulet C, Bourassa MG. Clinical and angiographic predictors of new total coronary occlusion in coronary artery disease: analysis of 313 nonoperated patients. Am J Cardiol 1984; 54: 1176–81.

    PubMed  CAS  Google Scholar 

  53. Hangartner JRW, Charleston AJ, Davies MJ, Thomas AC. Morphological characteristics of clinically significant coronary artery stenosis in stable angina. Br Heart J 1986; 56: 501–8.

    PubMed  CAS  Google Scholar 

  54. Toussaint JF, Southern JF, Falk E, Fuster V, Kantor HL. Atherosclerotic plaque components imaged by nuclear magnetic resonance. Arterioscler Throm. In press.

    Google Scholar 

  55. Toussaint JF, Southern JF, Fuster V, Kantor HL. 13C-NMR spectroscopy of human atherosclerotic lesions: relation between fatty acid saturation, cholesteryl ester content and luminal obstruction. Arterio Throm. In press.

    Google Scholar 

  56. Badimon L, Badimon JJ, Turitto VT, Vallabhajosula S, Fuster V. Platelet thrombus formation on collagen type I: a model of deep vessel injury: influence of blood rheology, von Willebrand factor, and blood coagulation. Circulation 1988; 78: 1432–42.

    Google Scholar 

  57. Badimon L, Badimon JJ. Mechanism of arterial thrombosis in nonparallel streamlines: platelet thrombi grow at the apex of stenotic severily injured vessel wall: experimental study in the pig model. J Clin Invest 1989; 84: 1134–44.

    PubMed  CAS  Google Scholar 

  58. Turitto VT, Baungartner HR. Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Microvasc Res 1979; 17: 38–54.

    PubMed  CAS  Google Scholar 

  59. Mailhac A, Badimon JJ, Fallon JT et al. Effect of an eccentric severe stenosis on fibri(ogen) deposition on severily damaged vessel wall in arterial thrombosis. Relative contribution of fibri(ogen) and platelets. Circulation 1994; 90: 988–96.

    PubMed  CAS  Google Scholar 

  60. Davies SW, Marchart B, Lyons JP, Timmis AD. Irregular coronary lesion morphology after thrombosis predicts early clinical instability. J Am Coll Cardiol 1991; 18: 669–74.

    PubMed  CAS  Google Scholar 

  61. Hackett D, Davie G, Ghierchia S, Maseri A. Intermittent coronary occlusion in acute myocardial infarction: value of combined thrombolytic and vasodilatory therapy. N Engl J Med 1987; 317: 1055–9.

    PubMed  CAS  Google Scholar 

  62. Ohman EM, Topol EJ, Califf RM et al. An analysis of the cause of early mortality after administration of thrombolytic therapy. Cor Art Dis 1993; 4: 957–64.

    CAS  Google Scholar 

  63. Lassila R, Badimon JJ, Vallabhajosula S, Badimon L. Dynamic monitoring of platelet deposition on severily damaged vessel wall in flowing blood: effect of different stenosis on thrombus growth. Arteriosclerosis 1990; 10: 306–15.

    PubMed  CAS  Google Scholar 

  64. Meyer BJ, Badimon JJ, Mailhac A et al. Inhibition of growth of thrombus on fresh mural thrombus. Targeting optimal therapy. Circulation 1994; 90: 2432–8.

    PubMed  CAS  Google Scholar 

  65. Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J. Clot bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990; 86: 385–91.

    PubMed  CAS  Google Scholar 

  66. Francis CW, Markham RE Jr, Barlow GH, Florack TM, Dorbrynski DM, Marder VJ. Thrombin activity of fibrin thrombi and soluble plasmic derivatives. J Lab Clin Med 1983; 102: 220–30.

    PubMed  CAS  Google Scholar 

  67. Fitzgerald DJ, Fitzgerald GA. Role of thrombin and thromboxane A2 in reocclusion following coronary thrombolysis with tissue-type Plasminogen activator. Proc Nat Acad Sci USA 1989; 86: 7585–9.

    PubMed  CAS  Google Scholar 

  68. Owen J, Friedman KD, Grossman BA, Wilkins C, Berke AD, Powers ER. Thrombolytic therapy with tissue Plasminogen activator or Streptokinase induces transient thrombin activity. Blood 1988; 72: 616–20.

    PubMed  CAS  Google Scholar 

  69. Eisenberg PR, Sherman LA, Jaffe AS. Paradoxic elevation of fibrinopeptide A after Streptokinase: evidence for continued thrombosis despite intense fibrinolysis. J Am Coll Cardiol 1987; 10: 527–9.

    PubMed  CAS  Google Scholar 

  70. Maseri A, Labbate A, Baroldi G et al. Coronary vasospasm as a possible cause of myocardial infarction. A conclusion derived from the study of “preinfarction” angina. N Engl J Med 1978; 299: 1271–7.

    PubMed  CAS  Google Scholar 

  71. McLechana JM, Vita J, Fish RD et al. Early evidence of endothelial vasodilator dysfunction of coronary brach points. Circulation 1990; 82: 1169–73.

    Google Scholar 

  72. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391–401.

    PubMed  CAS  Google Scholar 

  73. Vita JA, Treasure CB, Nabel EG et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491–7.

    PubMed  CAS  Google Scholar 

  74. Celermajer D, Sorensen K, Gooch V et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–5.

    PubMed  CAS  Google Scholar 

  75. Willerson JT, Golino P, Eidt J et al. Specific platelet mediators and unstable coronary artery lesions: experimental evidence and potential clinical implications. Circulation 1989; 80: 198–205.

    PubMed  CAS  Google Scholar 

  76. Lam JYT, Chesebro JH, Steele PM et al. Is vasospasm related to platelet deposition? Relantionship in a porcine preparation of arterial injury in vivo. Circulation 1987; 75: 243–8.

    PubMed  CAS  Google Scholar 

  77. Vanhoutte PM, Shimokawa H. Endothelium-derived relaxing factor and coronary vasospasm. Circulation 1989; 80: 1–9.

    PubMed  CAS  Google Scholar 

  78. Fishell TA, Derby G, Tse TM, Stadius ML. Coronary artery vasoconstriction routinely occurs after percutaneous transluminal coronary angiosplasty. Circulation 1988; 78: 1323–4.

    Google Scholar 

  79. el-Tamimi H, Davies GL, Hackett D et al. Abnormal vasomotor changes early after coronary angioplasty. Circulation 1991; 84: 1198–202.

    PubMed  CAS  Google Scholar 

  80. Badimon L, Lassila R, Badimon J, Fuster V. An acute surge of epinephrine stimulates platelet deposition to severily damaged vascular wall. J Am Coll Cardiol 1990; 15(Suppl): 181A (Abstract).

    Google Scholar 

  81. Larson PT, Wallen NH, Hjemdahl P. Norepinephrine-induced platelet activation in vivo is only partly counteracted by aspirin. Circulation 1994; 89: 1951–7.

    Google Scholar 

  82. Kimura S, Nishinaga M, Ozawa T, Shimada K. Thrombin generation as an acute effect of cigarette smoking. Am Heart J 1994; 128: 7–11.

    PubMed  CAS  Google Scholar 

  83. Davies MJ, Bland MJ, Hangartner WR et al. Factors influencing the presence or absence of acute coronary thrombi in sudden ischemic death. Eur Heart J 1989; 10: 203–8.

    PubMed  CAS  Google Scholar 

  84. Ridker PM, Manson JE, Buring JE, Muller JE, Hennekens CH. Circadian variation of acute myocardial infarction and the effect of low-dose aspirin in a randomized trial of physicians. Circulation 1990; 82: 897–902.

    PubMed  CAS  Google Scholar 

  85. Rader DJ, Hoeg JM, Brewer HB Jr. Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease. Ann Intern Med 1994; 120: 1012–25.

    PubMed  CAS  Google Scholar 

  86. Badimon JJ, Badimon L, Turitto VT, Fuster V. Platelet deposition at high shear rates is enhanced by high plasma cholesterol levels: in vivo study in a rabitt model. Arterio Thromb 1991; 11: 395–402.

    CAS  Google Scholar 

  87. Fuster V, Chesebro JH, Frye RL, Elveback LR. Platelet survival and the development of coronary artery disease in the young adult: effects of cigarette smoking, strong family history, and medical therapy. Circulation 1981; 63: 546–51.

    PubMed  CAS  Google Scholar 

  88. McLean JW, Tomlinson JE, Kuang WJ et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 1987; 30: 132–7.

    Google Scholar 

  89. Frank SL, Klisak I, Sparkes RS et al. The apoprotein(a) gene resides on human chromosome 6q26–27 in close proximity to the homologous gene for plasminogen. Hum Genet 1988; 79: 352–6.

    PubMed  CAS  Google Scholar 

  90. Loscalzo J. Lipoprotein(a): a unique risk factor for athero-thrombotic disease. Arteriosclerosis 1990; 10: 672–9.

    PubMed  CAS  Google Scholar 

  91. Kawai C. Pathogenesis of acute myocardial infarction. Novel regulatory systems of bioactive substances in the vessel wall. Circulation 1994; 90: 1033–43.

    PubMed  CAS  Google Scholar 

  92. Bensoussan D, Levy-Toledano S, Passa P, Caen J, Caniver J. Platelet hyperaggregation and increased plasma level of von Willebrand factor in diabetics with retinopathy. Diabetologgia 1975; 11: 307–12.

    CAS  Google Scholar 

  93. Schwartz CJ, Kelley JL, Valente AJ, Cayatte AJ, Sprague EA, Rozek MM. Pathogenesis of the atherosclerotic lesion: implications for diabetes mellitus. Diabetes Care 1992; 15: 1156–67.

    PubMed  CAS  Google Scholar 

  94. The diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–86.

    Google Scholar 

  95. Jacoby RM, Nesto RW. Acute myocardial infarction in the diabetic patient: pathophysiology, clinical course and prognosis. J Am Coll Cardiol. 1992; 20: 736–44.

    PubMed  CAS  Google Scholar 

  96. Lamb JYT, Latour JG, Lesperance J, Waters D. Platelet aggregation, coronary artery disease progression and future coronary events. Am J Cardiol 1994; 73: 333–8.

    Google Scholar 

  97. Merlini A, Bauer KA, Oltrona L et al. Persistent activation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 1994; 90: 61–8.

    PubMed  CAS  Google Scholar 

  98. Meade TW, North WRS, Chakrabarti R et al. Haemostatic function and cardiovascular death: early results of a prospective study. Lancet 1980; 1: 1050–4.

    PubMed  CAS  Google Scholar 

  99. Wilhelmsem L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 311: 501–5.

    Google Scholar 

  100. McGill DA, Ardlie NG. The relationship between blood fibrinogen level and coronary artery disease. Cor Art Dis 1990; 1: 557–66.

    Google Scholar 

  101. Rosengren A, Wilhelmsen L, Wellin L, Tsipogianni A, Teger-Nilsson AC, Wedel H. Social influences and cardiovascular risk factor as determinat of plasma fibrinogen concentration in a general population sample of middle age men. Br Med J 1990; 330: 634–8.

    Google Scholar 

  102. Fuster V, Dyken ML, Vokonas PS, Hennekens C. Aspirin as a therapeutic agent in cardiovascular disease. Circulation 1993; 87: 659–75.

    PubMed  CAS  Google Scholar 

  103. Cohen M, Adams PC, Parry G et al. Combination antithrombotic therapy in unstable rest angina and non-Q-wave infarction in nonprior aspirin users: primary endpoints analysis from the ATACS trial. Circulation 1994; 89: 81–8.

    PubMed  CAS  Google Scholar 

  104. Simmons ML, Jan de Boer M, Brand van den JBMM et al. and the European Cooperative Study Group. Randomized trial of a GPIIb/IIIa platelet receptor blocker in refractory unstable angina. Circulation 1994; 89: 596–603.

    Google Scholar 

  105. Kleiman NS, Ohman M, Califf RM et al. Profound inhibition of platelet aggregation with monoclonal antibody 7E3Fab after thrombolytic therapy: results of the thrombolysis and angioplasty in myocardial infarction (TAMI) 8 pilot study. J Am Coll Cardiol 1993; 22: 381–9.

    PubMed  CAS  Google Scholar 

  106. Antman EM, for the TIMI 9A Investigators. Hirudin in acute myocardial infarction. Safety report from the thrombolysis and thrombin inhibition in myocardial infarction (TIMI) 9A trial. Circulation 1994; 90: 1624–30.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fernández-Ortiz, A., Fuster, V. (1996). The role of thrombosis in acute coronary heart disease. In: Willich, S.N., Muller, J.E. (eds) Triggering of Acute Coronary Syndromes. Developments in Cardiovascular Medicine, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1577-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1577-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7205-2

  • Online ISBN: 978-94-009-1577-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics