Skip to main content

Abstract

Biosensors are analytical devices that transduce biological reactions into electrical signals. The unique feature of a biosensor is that the probe incorporates a biological sensing element close to the signal transducer, resulting in a device that is specific either for a particular chemical or for a group of related chemicals (Figure 7.1). Although the major thrust in biosensor development since the early 1970s has been for health care applications, a survey of the market potential (Hall, 1990) has identified the increasing importance of biosensors in environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, M., Morioka, A. and Suzuki, S. (1978) Electrochemical determination of IgG, Journal of Membrane Science, 4, 221–226.

    Article  CAS  Google Scholar 

  • Aizawa, M., Suzuki, S., Nagamura, Y., Shinohara, R. and Ishiguro, J. (1979a) Enzyme immunoassay for human chorionic gonadotropin with electrochemical detection. Journal of Solid-phase Biochemistry, 4, 25–30.

    CAS  Google Scholar 

  • Aizawa, M., Morioka, A., Suzuki, S. and Nagamura, Y. (1979b) Enzyme immunosensor III. Amperometric determination of human chorionic gonadotropin by membrane bound antibody. Analytical Biochemistry, 94, 22–28.

    Article  CAS  Google Scholar 

  • Albery, W.J., and Cranston, D.H. (1987) Amperometric enzyme electrodes: theory and experiment. In Biosensors: Fundamentals and Applications, (ed. A.P.F. Turner, I. Karube and G.S. Wilson), pp. 180–210. Oxford University Press, Oxford.

    Google Scholar 

  • Alder, J.F. and McCallum, J.J. (1983) Piezoelectric crystals for mass and chemical analysis.Analyst, 108, 1169–1189.

    Article  CAS  Google Scholar 

  • Allen, C. (1994) Thunder and Lightning: The RAF in the Gulf Warner Books, London.

    Google Scholar 

  • Alvarez-Icaza, M. and Bilitewski, U. (1993) Mass production of biosensors. Analytical Chemistry, 65, 525A–533A.

    Article  CAS  Google Scholar 

  • Alvarez-Icaza, M. and Scmid, R.D. (1994) Observation of direct electron transfer from the active centre of glucose oxidase to a graphite electrode achieved through the use of mild immobilisation. Bioelectrochemistry and Bioenergetics, 33, 191–199.

    Article  CAS  Google Scholar 

  • Ariga, O., Takagi, H., Nishizawa, H. and Sano, Y. (1987) Immobilization of microorganisms with PVA hardened by iterative freezing and thawing. Journal of Fermentation Technology, 65, 651–658.

    Article  CAS  Google Scholar 

  • Arnold, M.A. and Rechnitz, G.A. (1980) Comparison of bacterial, mitochondrial, tissue and enzyme biocatalysts for glutamine selective membrane electrodes. Analytical Chemistry, 52, 1170–1174.

    Article  CAS  Google Scholar 

  • Arnold, M.A. and Rechnitz, G.A. (1987) Biosensors based on plant and animal tissue. In Biosensors: Fundamentals and Applications, (ed. A.P.F. Turner, I. Karube and G.S. Wilson), Oxford University Press, Oxford, pp. 35–78.

    Google Scholar 

  • Arwin, H., Lundström, I. and Palmqvist, A. (1982) Electrode adsorption method for the determination of enzymatic activity. Medical and Biological Engineering Computation, 20, 362–374.

    Article  CAS  Google Scholar 

  • Atkinson, A.L. and Rawson, D.M. (1994) Biosensors for pollution monitoring and toxicity assessment. In Ecotoxicology of Soil Organisms, (ed. M.H. Donker, H. Eijsackers and F. Heimbach), Lewis, Boca Raton, FL, pp. 68–92.

    Google Scholar 

  • Bains, W. (1994) A spectroscopically interrogated flow-through type toxicity biosensor. Biosensors and Bioelectronics, 9, 111–117.

    Article  CAS  Google Scholar 

  • Bartlett, P.N. and Cooper, J.M. (1993) A review of the immobilisation of enzymes in electropolymerised films. Journal of Electroanalytical Chemistry, 362, 1–12.

    Article  CAS  Google Scholar 

  • Bartlett, P.N. and Whitaker, R.G. (1987a) Electrochemical immobilisation of enzymes, Part II. Glucose oxidase immobilised in poly-N-methylpyrrole. Journal of Electroanalytical Chemistry, 224, 37–48.

    Article  CAS  Google Scholar 

  • Bartlett, P.N. and Whitaker, R.G. (1987b) Electrochemical immobilisation of enzymes, Part I. Theory. Journal of Electroanalytical Chemistry, 224, 27–35.

    Article  CAS  Google Scholar 

  • Bartlett, P.N., Tebbutt, P. and Tyrrell, C.H. (1992) Electrochemical immobilisation of enzymes, Part III. Immobilisation of glucose oxidase in thin films of electrochemically polymerised phenols. Analytical Chemistry, 64, 138–142.

    Article  CAS  Google Scholar 

  • Bennetto, H.P., Box, J., Delaney, G.M., Mason, J.R., Roller, S.D., Stirling, J.L. and Thurston, C.F. (1987) Redox-mediated electrochemistry of whole micro-organisms; from fuel cells to biosensors. In Biosensors: Fundamentals and Applications, (ed. A.P.F. Turner, I. Karube and G. S. Wilson), Oxford University Press, Oxford, pp. 291–314.

    Google Scholar 

  • Bitton, G., Dutton, R.J. and Koopman, B. (1988) Cell permeability to toxicants: an important parameter in toxicity test using bacteria. CRC Critical Reviews in Environmental Control, 18, 177–188.

    Article  CAS  Google Scholar 

  • Blaedel, W.J. and Jenkins, R.A. (1972) Study of a reagentless lactate electrode. Analytical Chemistry, 48, 1240–1247.

    Article  Google Scholar 

  • Blake, C. and Gould, B.J. (1984) Use of enzymes in immunoassay techniques: a review.Analyst, 109, 533–547.

    Article  CAS  Google Scholar 

  • Breyer, B. and Radcliffe, F.J. (1951) Polarographic investigations of the antigen antibody reaction. Nature (London), 167, 79.

    Article  CAS  Google Scholar 

  • Buch, R.M., Barker, T.Q. and Rechnitz, G.A. (1991) Intact chemoreceptors based on Hawaiian aquatic species. Analytica Chimica Acta, 243, 157–166.

    Article  CAS  Google Scholar 

  • Campanella, L., Paoletti, A.M. and Tranchida, G. (1987) Biosensors of total toxicity. Chimicaoggi, March, 61–63.

    Google Scholar 

  • Cardosi, M.F. (1994) Hydrogen peroxide-sensitive electrode based on horseradish peroxidase-modified platinised carbon. Electroanalysis, 6, 89–96.

    Article  CAS  Google Scholar 

  • Cardosi, M.F. and Birch, S.W. (1993) Screen printed glucose electrodes based on platinised carbon particles and glucose oxidase. Analytica Chimica Acta, 276, 69–74.

    Article  CAS  Google Scholar 

  • Cardosi, M.F. and Turner, A.P.F. (1991) Mediated electrochemistry: a practical solution to biosensing. In Advances in Biosensors, Vol. 1, (ed. A.P.F. Turner), pp. 125–169. JAI Press, London.

    Google Scholar 

  • Cardosi, M.F., Birch, S.W., Talbot, J. and Phillips, A. (1991) An electrochemical immunoassay for Clostridium perfringens phospholipase C. Electroanalysis, 3, 169–176.

    Article  CAS  Google Scholar 

  • Carr, P.W. and Bowers, L.D. (1980) Immobilised enzymes in analytical and clinical chemistry. In Advances in Biochemical Engineering, Vol. 15, (ed. A. Fiechter), pp. 89–129. Springer Verlag, Berlin.

    Google Scholar 

  • Cass, A.E.G. (ed.) (1990) Biosensors: A Practical Approach. IRL Press, Oxford.

    Google Scholar 

  • Cooper, J. and Hall, E.A.H. (1993) Catalytic reduction of benzoquinone at polyaniline and polyaniline/enzyme films. Electroanalysis, 5, 385–397.

    Article  CAS  Google Scholar 

  • Corcoran, C.A. and Kobos, R.K. (1987) Selectivity enhancement of an Escherichia coli bacterial electrode using enzyme and transport inhibitors. Biotechnology and Bioengineering, 30, 565–570.

    Article  CAS  Google Scholar 

  • Corcoran, C.A. and Rechnitz, G.A. (1985) Cell-based biosensors. Trends in Biotechnology, 3, 92–96.

    Article  CAS  Google Scholar 

  • Cottrell, F.G. (1902) Der Restrom bei galvanischer Polarisation, betratchet als ein Diffusionproblem. Zeitschrift für physik Chemie, XLII, 385–431.

    Google Scholar 

  • Deshpande, M.V. and Hall, E.A.H. (1990) An electrochemically grown polymer as an immobilisation matrix for whole cells: application in an amperometric dopamine sensor. Biosensors and Bioelectronics, 5, 431–448.

    Article  CAS  Google Scholar 

  • Diaz, A. (1981) Electrochemical preparation and characterisation of conducting polymers. Chemica Scripta, 17, 145–148.

    CAS  Google Scholar 

  • Dicks, J.M., Cardosi, M.F., Turner, A.P.F. and Karube, I. (1993) The application of ferrocene-modified n-type silicon in glucose biosensors. Electroanalysis, 5, 1–9.

    Article  CAS  Google Scholar 

  • Dorward, E.J. and Barisas, B.G. (1984) Acute toxicity screening of water pollutants using a bacteria electrode. Environmental Science and Technology, 18, 967–972.

    Article  CAS  Google Scholar 

  • Doyle, M.J., Halsall, H.B. and Heinemann, W.R. (1982) A heterogeneous immunoassay for serum proteins by differential pulse anodic stripping voltammetry. Analytical Chemistry, 54, 2318–2322.

    Article  CAS  Google Scholar 

  • Eddowes, M. (1990) Theoretical methods for analysing biosensor performance. In Biosensors: A Practical Approach, (ed. A.E.G. Cass), pp. 211–262. IRL Press, Oxford.

    Google Scholar 

  • Elliot, C.M. and Murray, R.W. (1976) Chemically modified carbon electrodes. Analytical Chemistry, 48, 1247–1254.

    Article  Google Scholar 

  • Evans, G.P., Johnson, D. and Withell, C. (1986) Development of the WRc Mk III fish monitor: description of the system and its response to some commonly encountered pollutants. WRc Environmental Report TR233, WRc Medmenham, UK.

    Google Scholar 

  • Evans, J.F. and Kuwana, T. (1977) Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasma. Analytical Chemistry, 51, 358–365.

    Article  Google Scholar 

  • Fersht, A. (1985) Enzyme Structure and Mechanism, 2nd edn, Freeman, New York.

    Google Scholar 

  • Foulds, N.C. and Lowe, C.R. (1988) Immobilisation of glucose oxidase in ferrocene-modified pyrrole polymers. Analytical Chemistry, 60, 2473–2478.

    Article  CAS  Google Scholar 

  • Gaisford, W.C., Richardson, N.J., Haggett, B.G.D. and Rawson, D.M. (1991) Microbial biosensors for environmental monitoring. Biochemical Society Transactions, 19, 15–18.

    CAS  Google Scholar 

  • Gamati, S., Luong, J.H.T. and Mulchandani, A. (1991) A microbial biosensor for trimethyla- mine using Pseudomonas aminovarans cells. Biosensors and Bioelectronics, 6, 125–131.

    Article  CAS  Google Scholar 

  • Gayet, J.-C, Haouz, A., Geloso-Meyer, A. and Burstein, C. (1991) Detection of heavy metal salts with biosensors built with an oxygen electrode coupled to various immobilised oxidases and dehydrogenases. Biosensors and Bioelectronics, 6, 55–72.

    Article  Google Scholar 

  • Goodson, L.H. and Jacobs, W.B. (1974) Application of immobilised enzymes to detection and monitoring. In Enzyme Engineering, Vol. 2, (ed. K.E. Pye and L.B. Wingard, Jr), pp. 393–400. Plenum Press, New York.

    Google Scholar 

  • Goodson, L.H. and Jacobs, W.B. (1976) Monitoring of air and water for enzyme inhibitors. In Methods in Enzymology, Vol. 44, (ed. S.P. Colwick and N.O. Kaplan), pp. 647–658. Academic Press, New York.

    Google Scholar 

  • Gough, D.A. and Leypoldt, J.K. (1981) Theoretical aspects of enzyme electrode design. Applied Biochemistry and Bioengineering, 3, 175–200.

    CAS  Google Scholar 

  • Gregg, B.A. and Heller, A. (1990) Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Analytical Chemistry, 62, 258–263.

    Article  CAS  Google Scholar 

  • Guilbault, G.G. and Jordan, J. (1988) Analytical uses of piezoelectric crystals. CRC Reviews, 19, 28–60.

    Google Scholar 

  • Guilbault, G.G. and Schmid, R. (1991) Electrochemical, piezoelectric and fibre-optic biosensors. In Advances in Biosensors (ed. A.P.F. Turner), JAI Press Ltd, London, pp. 257–289.

    Google Scholar 

  • Hall, D.O. and Rao, K.K. (1994) Photosynthesis. Cambridge University Press, UK.

    Google Scholar 

  • Hall, E. (1990) Biosensors. Open University Press, Milton Keynes.

    Google Scholar 

  • Hall, G.F., Best, D.J. and Turner, A.P.F. (1988a) The Determination of p-cresol in chloroform with an enzyme electrode used in the organic phase. Analytica Chimica Acta, 213, 113–119.

    Article  CAS  Google Scholar 

  • Hall, G.F., Best, D.J. and Turner, A.P.F. (1988b) Amperometric enzyme electrode for the determination of phenols in chloroform. Enzyme and Microbial Technology, 10, 543–546.

    Article  CAS  Google Scholar 

  • Hart, J.P. and Wring, S.A. (1994) Screen-printed voltammetric and amperometric electrochemical sensors for decentralised testing. Electroanalysis, 6, 617–624.

    Article  CAS  Google Scholar 

  • Hertl, W. (1987) Amperometric immunoassays. Bioelectrochemistry and Bioenergetics, 17, 89–100.

    Article  CAS  Google Scholar 

  • Jeanfils, J. (1986) Immobilization of whole cells of green algae or cyanobacteria in insoluble matrices. Morphological observations and nitrate reductase activity of immobilized cells. Archives of Biology (Bruxelles), 97, 209–222.

    CAS  Google Scholar 

  • Karube, I. (1987) Micro-organism based sensors. In Biosensors: Fundamentals and Applications, (ed. A.P.F. Turner, I. Karube and G.S. Wilson), pp. 13–29. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Karube, I. and Tamiya, T. (1987) Biosensors for environmental control. Pure and Applied Chemistry, 59, 545–554.

    Article  CAS  Google Scholar 

  • Karube, I., Hiramoto, K., Kawarai, M. and Sode, K. (1989) Biosensor for toxic compounds using immobilized animal cell membrane. Membrane, 14, 311–318.

    CAS  Google Scholar 

  • Kong, Z., Vanrolleghem, P.A. and Verstraete, W. (1993) An activated sludge-based biosensor for rapid IC50 estimation and on-line toxicity monitoring. Biosensors and Bioelectronics, 8, 49–58.

    Article  CAS  Google Scholar 

  • Kuek, C. and Armitage, T.M. (1985) Scanning electronmicroscopic examination of calcium alginate beads immobilising growing mycelia. Enzyme and Microbial Technology, 1, 121– 125.

    Article  Google Scholar 

  • Kulys, L. and D’Costa, E.J. (1991) Printed electrochemical sensor for ascorbic acid determination. Analytica Chimica Acta, 243, 173–178.

    Article  CAS  Google Scholar 

  • Labuda, J. (1992) Chemically modified electrodes as sensors in analytical chemistry. Selective Electrode Reviews, 14, 33–86.

    CAS  Google Scholar 

  • Laidler, K.J. and Bunting, P.S. (1973) The Chemical Kinetics of Enzyme Action, 2nd edn, Clarendon Press, Oxford.

    Google Scholar 

  • Lee, S., Sode, K., Nakanishi, K., Marty, J.-L., Tamiya, E. and Karube, I. (1992) A novel microbial sensor using luminous bacteria. Biosensors and Bioelectronics, 7, 273–277.

    Article  CAS  Google Scholar 

  • Levich, V.G. (1962) Physiochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Li, F., Tan T.C. and Lee, Y.K. (1994) Effects of pre-conditioning and microbial composition on the screening efficacy of a BOD biosensor. Biosensors and Bioelectronics, 9, 197–205.

    Article  CAS  Google Scholar 

  • Li, F. and Tan T.C. (1994b) Monitoring BOD in the presence of heavy metal ions using a poly(4-vinylpyridine)-coated microbial sensor. Biosensors and Bioelectronics, 9, 445–455.

    Article  CAS  Google Scholar 

  • Li, F. and Tan T.C. (1994a) Effect of heavy metal ions on the efficacy of a mixed Bacilli BOD sensor. Biosensors and Bioelectronics, 9, 315–324.

    Article  CAS  Google Scholar 

  • Li, Y.-R. and Chu, J. (1991) Study of BOD microbial sensors for waste water treatment control. Applied Biochemistry and Biotechnology, 28/29, 855–863.

    Article  Google Scholar 

  • Liang, B.S., Li, X.-M. and Wang, H.Y. (1986) Cellular electrode for antitumor drug screening. Biotechnology Progress, 2, 187–191.

    Article  CAS  Google Scholar 

  • Lin, A.W.C., Yeh, P., Yacynych, A.M. and Kuwana, T. (1977) Cyanuric chloride as a general linking agent for the attachment of redox groups to pyrolytic graphite and metal oxide electrodes. Journal of Electroanalytical Chemistry, 84, 411–419.

    Article  CAS  Google Scholar 

  • Macholán, L. and Boháckoá, I. (1988) Non-traditional membrane biocatalysts for amperometric enzyme electrodes sensing phenolic substances. Biologia (Bratislava), 43, 1121–1130.

    Google Scholar 

  • Macholán, L. and Schanel, L. (1977) Enzyme electrode with immobilised polyphenol oxidase for determination of phenolic substrates. Collection of Czechoslovak Chemical Communications, 42, 3667–3675.

    Google Scholar 

  • Macritchie, F. (1978) Dynamics of protein adsorption. Advances in Protein Chemistry, 32, 283–289.

    Article  CAS  Google Scholar 

  • Martens, N. and Hall, E.A.H. (1994) Diaminodurene as a mediator of a photocurrent using intact cells of cyanobacteria. Photochemistry and Photobiology, 59, 91–98.

    Article  CAS  Google Scholar 

  • Mascini, M. and Palleschi, G. (1989) Design and applications of enzyme electrode probes. Selective Electrode Review, 11, 191–264.

    CAS  Google Scholar 

  • Matsunaga, T., Tomoda, R. and Matsuda, H. (1984) Photomicrobial electrode for the selective determination of sulphide. Applied Microbiology and Biotechnology, 19, 404–408.

    Article  CAS  Google Scholar 

  • Mattiasson, B. and Nilsson, H. (1977) Competitive immunoelectrode for the determination of albumin. Febs Lett 78, 251–256.

    Article  CAS  Google Scholar 

  • Mattiasson, B., Nilsson, H. and Olsson, B. (1979) An apoenzyme electrode. Journal of Applied Biochemistry, 1, 377–384.

    CAS  Google Scholar 

  • McNeil, C.J. Bannister, J.V. and Higgins, I.J. (1988) Amperometric determination of alkaline phosphatase activity: application to immunoassays. Biosensors, 3, 199–209.

    Article  Google Scholar 

  • Mell, L.D. and Maloy, J.T. (1975) A model for the amperometric enzyme electrode obtained through digital simulation and applied to the glucose oxidase system. Analytical Chemistry, 47, 299–307.

    Article  CAS  Google Scholar 

  • Moses, P.R., Wier, L. and Murray, R.W. (1975) Chemically modified tin oxide electrode. Analytical Chemistry, 47, 1882–1886.

    Article  CAS  Google Scholar 

  • Muramatsu, H., Kajiwara, K., Tamiya, E. and Karube, I. (1986) Piezoelectric immunosensor for the detection of Candida albicans microbes. Analytica Chimica Acta, 188, 257–261.

    Article  Google Scholar 

  • Murray, R.W. (1980) Chemically modified electrodes. Accounts of Chemical Research, 13, 135–141.

    Article  CAS  Google Scholar 

  • Ngeh-Ngwainbi, J., Foley, P.H., Kuan, S.S. and Guilbault, G.G. (1986) Parathion antibodies on piezoelectric crystals. Journal of the American Chemical Society, 108, 5444–5450.

    Article  CAS  Google Scholar 

  • Nishikawa, S., Sakai, S., Karube, I., Matsunaga, T. and Suzuki, S. (1982) Dye-coupled electrode system for the rapid determination of cell populations in polluted water. Applied and Environmental Microbiology, 43, 814–818.

    CAS  Google Scholar 

  • Owicki, J.C. and Parce, J.W. (1990) Bioassays with a microphysiometer. Nature, 344, 271–272.

    Article  CAS  Google Scholar 

  • Owicki, J.C. and Parce, J.W. (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosensors and Bioelectronics, 7, 255–272.

    Article  CAS  Google Scholar 

  • Oyama, N., Ohsaka, T., Mizunuma, M. and Kobayashi, M. (1988) Electropolymerised cobalt tetrakis (o-aminophenyl) porphyrin film mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 60, 2534–2536.

    Article  CAS  Google Scholar 

  • Palmquist, E., Kriz, C.B., Khayyami, M., Danielson, B., Larsson, P.-O., Mosbach, K. and Kriz, D. (1994) Development of a simple detector for microbial metabolism, based on a polypyrrole DC resistometric device. Biosensors and Bioelectronics, 9, 551–556.

    Article  Google Scholar 

  • Pandard, P. and Rawson, D.M. (1993) An amperometric algal biosensor for herbicide detection employing a carbon cathode oxygen electrode. Environmental Toxicology and Water Quality: An International Journal, 8, 323–333.

    Article  CAS  Google Scholar 

  • Pandard, P., Vasseur, P. and Rawson, D.M. (1993) Comparison of two types of sensors using eukaryotic algae to monitor pollution of aquatic systems. Water Research, 27, 427–431.

    Article  CAS  Google Scholar 

  • Rawson, D.M., Willmer, A.J. and Cardosi, M.F. (1987) The development of whole cell biosensors for on-line screening of herbicide pollution of surface waters. Toxicity Assessment, 2, 325–340.

    Article  CAS  Google Scholar 

  • Rawson, D.M., Willmer, A.J. and Turner, A.P.F. (1989) Whole-cell biosensors for environmental monitoring. Biosensors, 4, 299–311.

    Article  CAS  Google Scholar 

  • Rechnitz, G.A., Kobos, R.K., Riechel, S.J. and Gebauer, C.R. (1977) A bio-selective membrane electrode prepared with living bacterial cells. Analytica Chimica Acta, 94, 357–365.

    Article  CAS  Google Scholar 

  • Richardon, N.J., Gardner, S. and Rawson, D.M. (1991) A chemically mediated amperometric biosensor for monitoring eubacterial respiration. Journal of Applied Bacteriology, 70, 422–426.

    Google Scholar 

  • Riedel, K. (1991) Biochemical fundamentals and improvement of the selectivity of microbial biosensors — a minireview. Bioelectrochemistry and Bioenergetics, 25, 19–30.

    Article  CAS  Google Scholar 

  • Riedel, K. (1994) The alternative to BOD5: ARAS-SensorBOD. Application Report Bio Nr.202. Dr Bruno Lange, GmbH, Berlin.

    Google Scholar 

  • Riedel, K., Renneberg, R., Kühn, M. and Scheller, F. (1988a) A fast estimation of biological oxygen demand using microbial sensors. Applied Microbiology and Biotechnology, 28, 316–318.

    CAS  Google Scholar 

  • Riedel, K., Renneberg, R. and Liebs, P. (1988b) Biochemical basis of a kinetically controlled microbial sensor. Bioelectrochemistry and Bioenergetics, 19, 137–144.

    Article  CAS  Google Scholar 

  • Riedel, K., Naumov, A.V., Grishenkov, V.G., Boronin, A.M., Stein, HJ., Scheller, F. and Mueller, H.-G. (1989) Plasmid-containing microbial sensor for (δ-caprolactam. Applied Microbiology and Biotechnology, 31, 502–504.

    Article  CAS  Google Scholar 

  • Riedel, K., Huth, J., Kuehn, M. and Liebs, P. (1990a) Amperometric determination of ammonium ions with a microbial sensor. Journal of Chemical Technology and Biotechnology, 41, 109–116.

    Google Scholar 

  • Riedel, K., Lange, K.-P., Stein, H.-J., Kühn, M., Ott, P. and Scheller, F. (1990b) A microbial sensor for BOD. Water Research, 24, 883–887.

    Article  CAS  Google Scholar 

  • Riedel, K., Naumov, A.V., Boronin, A.M., Golovleva, L.A., Stein, H.J. and Scheller, F. (1991) Microbial sensors for determination of aromatics and their chloroderivatives. I. Determination of 3-chlorobenzoate using a Pseudomonas-contaimng biosensor. Applied Microbiology and Biotechnology, 35, 559–562.

    Article  CAS  Google Scholar 

  • Roit, I. (1980) Essential Immunology, 4th edn., Blackwell Scientific, Boston.

    Google Scholar 

  • Romette, J.L. and Boitieux, J.L. (1984) Oxidase enzyme: enzyme and immunoenzyme sensor. Annals of the New York Academy of Sciences, 434, 533–535.

    Article  CAS  Google Scholar 

  • Romette, J.L., Yang, J.S., Kusakabe, H. and Thomas, D. (1983) Enzyme electrode for the specific determination of l-lysine. Biotechnology and Bioengineering, 25, 2557–2566.

    Article  CAS  Google Scholar 

  • Rosen, I. and Rishpon, J. (1989) Alkaline phosphatase as a label for heterogeneous immunochemical sensors: an electrochemical study. Journal of Electroanalytical Chemistry, 258, 27–39.

    Article  CAS  Google Scholar 

  • Saini, S., Hall, G.F., Downs, M.E.A. and Turner, A.P.F. (1991) Organic phase enzyme electrodes. Analytica Chimica Acta, 249, 1–15.

    Article  CAS  Google Scholar 

  • Sauerbrey, G.Z. (1959) Use of a quartz vibrator for weighing thin layers on a microbalance. Zeitschrift Physik, 155, 206–210.

    Article  CAS  Google Scholar 

  • Scheller, F. and Schubert, F. (1992) Biosensors. Elsevier, Amsterdam.

    Google Scholar 

  • Schubert, F., Renneberg, R., Scheller, F.W. and Kirstein, L. (1984) Plant tissue hybrid electrode for determination of phosphate and fluoride. Analytical Chemistry, 56, 1677–1682.

    Article  CAS  Google Scholar 

  • Shaolin, M., Huaiguo, X. and Biding, Q. (1991) Bioelectrochemical response of the polyaniline glucose oxidase electrode. Journal of Electroanalytical Chemistry, 302, 7–16.

    Article  Google Scholar 

  • Shons, A., Dorman, F. and Najarian, J. (1972) Immunospecific microbalance. Journal of Biomedical and Material Research, 6, 565–670.

    Article  CAS  Google Scholar 

  • Sidwell, J.S. and Rechnitz, G.A (1985) ‘Bananatrode’ — an electrochemical sensor for dopamine. Biotechnology Letters, 7, 419–422.

    Article  CAS  Google Scholar 

  • Skladal, P. and Mascini, M. (1992) Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocynaine-modified composite electrodes and immobilized cholinesterases. Biosensors and Bioelectronics, 7, 335–343.

    Article  CAS  Google Scholar 

  • Starostina, N.G., Lusta, K.A. and Fikhte, B.A. (1983) Prediction of microbial resistance to immobilization in Polyacrylamide gel. Translated from Prikladnaya Biokhimiya I Mikrobiologiya, 19, 369–371.

    CAS  Google Scholar 

  • Tan, H.-M., Cheong, S.-P. and Tan, T.-C. (1994) An amperometric benzene sensor using whole cell Pseudomonas putida ML2. Biosensors and Bioelectronics, 9, 1–8.

    Article  CAS  Google Scholar 

  • Tan, T.C., Li, F., Neoh, K.G. and Lee, Y.K. (1992) Microbial membrane-modified dissolved oxygen probe for rapid biochemical oxygen demand measurement. Sensors and Actuators B, 8, 167–172.

    Article  Google Scholar 

  • Tan, T.C., Li, F. and Neoh, K.G. (1993) Measurement of BOD by initial rate of response of a microbial sensor. Sensors and Actuators B, 10, 137–142.

    Article  Google Scholar 

  • Tsushima, R., Kondo, A., Sakata, M. and Kawabata, N. (1992) Preparation of bacteria-adsorption polymer and its application to biosensor. Polymeric Materials Science and Engineering, 66, 437–438.

    CAS  Google Scholar 

  • Turner, A.P.F., Karube, I., and Wilson, G.S. (ed.) (1987) Biosensors: Fundamentals and Applications, Oxford University Press, Oxford.

    Google Scholar 

  • Walsh, CT. (1977) Enzymatic Reaction Mechanisms. Freeman, New York.

    Google Scholar 

  • Walters, R.R., Moriarty, B.E. and Buck, R.P. (1980) Pseudomonas bacterial electrode for determination of l-histidine. Analytical Chemistry, 52, 1680–1684.

    Article  CAS  Google Scholar 

  • Weber, S.G. and Purdy, W.C. (1979) Homogeneous voltammetric immunoassay. Analytical Letters, 12, 1–9.

    CAS  Google Scholar 

  • Wehmeyer, K.R., Halsall, H.B. and Heinemann, W.R. (1982) Electrochemical investigation of hapten-antibody interactions by differential pulse polarography. Clinical Chemistry, 28, 1968–1972.

    CAS  Google Scholar 

  • Wijesuriya, D.C. and Rechnitz, G.A. (1993) Biosensors based on plant and animal tissues. Biosensors and Bioelectronics, 8, 155–160.

    Article  CAS  Google Scholar 

  • Wring, S.A. and Hart, J.P. (1992) Chemically modified, screen printed carbon electrodes. Analyst, 117, 1281–1286.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Nagasawa, Y., Sawai, M., Sudo, T. and Tsubomura, H. (1978) Potentiometrie investigations of antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified metal electrodes. Journal of Immunological Methods, 22, 309–317.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Nagaoka, S., Tanaka, T., Shiro, T., Honma, K. and Tsubomura, H. (1983) Potentiometrie detection of biological substances by using chemically modified electrodes. Analytical Chemistry Symposium Series, No. 17 (Chemical Sensors), pp. 699–704.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Cardosi, M., Haggett, B. (1997). Biosensor devices. In: Campbell, M. (eds) Sensor Systems for Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1571-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1571-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7202-1

  • Online ISBN: 978-94-009-1571-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics