Skip to main content

Fischer-Tropsch synthesis and XRD characterization of an iron carbide catalyst synthesized by laser pyrolysis

  • Chapter
The Chemistry of Transition Metal Carbides and Nitrides

Abstract

Slurry phase Fischer-Tropsch synthesis (FTS) is conducted under industrially relevant conditions on an iron carbide catalyst of 30 nm particle size prepared by the laser pyrolysis of Fe(CO)5 and C2H4. The activity and selectivity are compared to that obtained for a precipitated catalyst and an industrially prepared ultrafine Fe2O3 catalyst. In general, the iron carbide catalyst is not as active for FTS or water-gas shift reaction as the precipitated catalyst; however, it is more active for the FTS than the ultrafine Fe2O3. At similar CO conversion the iron carbide produces less methane and has a higher C5+ and olefin selectivity than the precipitated catalyst. X-ray diffraction analysis shows that the iron carbide catalyst is composed of θ-Fe3C and Fe7C3 at the start of synthesis, while the CO pretreated, precipitated and ultrafine Fe2O3 catalysts are composed of χ-Fe5C2, ε′-Fe2.2C and Fe3O4. All three catalysts are rapidly oxidized to Fe3O4 during FTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.U.S. Rao, G.J. Stiegel, G.J. Cinquegrane and R.D. Srivastava. Fuel Proc. Tech., 30, 83 (1992).

    Article  CAS  Google Scholar 

  2. H. Kölbel and M. Ralek. Catal Rev.-Sci. Eng., 21, 225 (1980).

    Article  Google Scholar 

  3. R.D. Srivastava, V.U.S. Rao, G. Cinquegrane and G.J. Stiegel. Hydrocarbon Process, 69, 59 (1990).

    CAS  Google Scholar 

  4. J.M. Fox III. Catal. Lett., 7, 241 (1990).

    Google Scholar 

  5. H. Itoh, H. Hosaka, T. Ono and E. Kikuchi. Appl. Catal., 40, 53 (1988).

    Article  CAS  Google Scholar 

  6. G.W. Rice, R.A. Fiato and S.L. Soled. U.S. Patent 4,659,681 (1987).

    Google Scholar 

  7. R.A. Fiato, G.W. Rice, S. Misco and S.L. Sele. U.S. Patent 4,687,753 (1987).

    Google Scholar 

  8. S. Soled, E. Iglesia and R.A. Fiato. Catal. Lett., 7, 271 (1990).

    Article  CAS  Google Scholar 

  9. F. Fischer and H. Tropsch. Ges. Abhandl. Kenntnis 10, 313 (1932).

    CAS  Google Scholar 

  10. G.B. Raupp and W.N. Delgass. J. Catal, 58, 361 (1979).

    Article  CAS  Google Scholar 

  11. J.W. Niemantsverdriet, A.M. van der Kraan, W.L. van Dijk and H.S. van der Baan. J. Phys. Chem., 84, 3363 (1980).

    Article  CAS  Google Scholar 

  12. J.T. McCartney, L.J.E. Hofer, B. Seligman, J.A. Lecky, W.C. Peebles and R.B. Anderson. J. Phys. Chem. 57, 730 (1953).

    Article  CAS  Google Scholar 

  13. J.A. Amelse, J.B. Butt and L.H. Schwartz, J. Phys. Chem., 82, 588 (1978).

    Article  Google Scholar 

  14. H.C. Eckstrom and W.A. Adcock, J. Am. Chem. Soc., 72, 1042 (1950).

    Article  CAS  Google Scholar 

  15. G. Le Caër, J.M. Dubois, M. Pijolat, V. Perrichon and P. Bussièrre. J. Phys. Chem., 86, 4799 (1982).

    Article  Google Scholar 

  16. R.J. O’Brien, L. Xu, D.R. Milburn, Y.X. Li and B.H. Davis. Topics in Catal. 2, 1 (1995).

    Article  Google Scholar 

  17. C.S. Huang, L. Xu and B.H. Davis. Fuel Sci. & Technol. Int., 11, 639 (1993).

    CAS  Google Scholar 

  18. M.E. Dry. In: Catalysis: Science and Technology, R.B. Anderson and M. Boudart, Eds, (Springer-Verlag, New York, 1981), vol 1.

    Google Scholar 

  19. M.A. Vannice. J. Catal., 37, 449 (1975).

    Article  CAS  Google Scholar 

  20. M.A. Vannice. J. Catal., 50, 228 (1977).

    Google Scholar 

  21. R.B. Anderson. In: Catalysis, P.H. Emmett, Ed., (Reinhold, New York, 1956), vol. IV.

    Google Scholar 

  22. C.S. Huang, B. Ganguly, G.P. Huffman, F.E. Huggins and B.H. Davis. Fuel Sci. & Technol. Int., 11, 1289 (1993).

    CAS  Google Scholar 

  23. G.L. Vogler, X.Z. Jiang, J.A. Dumesic and R.J. Madon. J. Catal., 89, 116 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

O’Brien, R.J., Xu, L., Bi, X.X., Eklund, P.C., Davis, B.H. (1996). Fischer-Tropsch synthesis and XRD characterization of an iron carbide catalyst synthesized by laser pyrolysis. In: Oyama, S.T. (eds) The Chemistry of Transition Metal Carbides and Nitrides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1565-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1565-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7199-4

  • Online ISBN: 978-94-009-1565-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics