Skip to main content
  • 738 Accesses

Abstract

The benefits of miniaturization have been realized in the field of electrophoresis by using capillaries instead of cylindrical hollow tubing or slab gels. An additional miniaturization has been demonstrated by the use of photolithographically fabricated microstructure by Ciba Geigy [1, 2]. Photolithographic patterning on the silicon wafer has become a well-known technique in microelectronics and has been applied to gas and liquid chromatography. The process generally consists of the exposure of silicon wafer coated with photoresist to light through a metal mask followed by etching the exposed glass with a HF-based solution. Capillaries can be formed by covering the fabricated glass with other glass plate [1]. Capillary electrophoresis on a planar chip with a highly flexibile design is feasible by the fabrication of complicated microstructures. Manz and co-workers reported preliminary micro-CE on a 15cm × 4cm chip, which provides separation on a minute scale [1, 3, 4]. When the scale was decreased to 2cm × 1cm fluorescent labeled amino acids could be separated with up to 75000 theoretical plates in 15s [2] and with up to 6800 theoretical plates in 4s [5]. Fast and efficient separation of fluorescent labeled amino acids was presented by changing the separation length of the capillary to between 5 to 50mm and the applied potential with an integrated sample injection of 100 pl, which resulted in an analysis from a few seconds to a few tens of seconds with theoretical plate numbers of 5800 to 16000, respectively [6–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Lüdi, H.; Widmer, H.M. (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258.

    Article  CAS  Google Scholar 

  2. Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897.

    Article  CAS  Google Scholar 

  3. Harrison, D.J.; Manz, A.; Fan, Z.; Lüdi, H.; Widmer, H.M. (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 64, 1926–1932.

    Article  CAS  Google Scholar 

  4. Seiler, K.; Harrison, D.J.; Manz, A. (1993) Planar glass chips for capillary electrophoresis: Repetitive sample injection, quantitation, and separation efficiency. Anal. Chem. 65, 1481–1488.

    Article  CAS  Google Scholar 

  5. Fan, Z.H.; Harrison, D.J. (1994) Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 66, 177–184.

    Article  CAS  Google Scholar 

  6. Effenhauser, C.S.; Manz, A.; Widmer, H.M. (1993) Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal. Chem. 65, 2637–2642.

    Article  CAS  Google Scholar 

  7. Manz, A.; Verpoorte, E.; Effenhauser, C.S.; Burggraf, N.; Raymond, D.E.; Harrison, D.J.; Widmer, H.M. (1993) Miniaturization of separation techniques using planar chip technology. J. High Resolut. Chromatogr. 16, 433–436.

    Article  CAS  Google Scholar 

  8. Manz, A.; Verpoorte, E.; Effenhauser, C.S.; Burggraf, N.; Raymond, D.E.; Widmer, H.M. (1994) Planar chip technology for capillary electrophoresis. Presenilis J. Anal. Chem. 348, 567–571.

    Article  CAS  Google Scholar 

  9. Jacobson, S.C.; Hergenröder, R.; Koutny, L.B.; Ramsey, J.M. (1994) High-speed separations on a microchip. Anal. Chem. 66, 1114–1118.

    Article  CAS  Google Scholar 

  10. Effenhauser, C.S.; Paulus, A.; Manz, A.; Widmer, H.M. (1994) High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device. Anal. Chem. 66, 2949–2953.

    Article  CAS  Google Scholar 

  11. Woolley, A.T.; Mathies, R.A. (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl Acad. Sci. USA 91, 11348–11352.

    Article  CAS  Google Scholar 

  12. Jacobson, S.C.; Koutny, L.B.; Hergenröder, R.; Moore, Jr, A.W.; Ramsey, J.M. (1994) Microchip capillary electrophoresis with an integrated postcolumn reactor. Anal. Chem. 66, 3472–3476.

    Article  CAS  Google Scholar 

  13. Effenhauser, C.S.; Manz, A.; Widmer, H.M. (1995) Manipulation of sample fractions on a capillary electrophoresis chip. Anal. Chem. 67, 2284–2287.

    Article  CAS  Google Scholar 

  14. Wu, J.; Pawliszyn, J. (1994) Imaging detection methods for capillary isoelectric focusing. Am. Lab. 26, 48–52.

    Google Scholar 

  15. Wu, J.; Pawliszyn, J. (1995) Diode laser-based concentration gradient imaging detector for capillary isoelectric focusing. Anal. Chim. Acta 299, 337–342.

    Article  CAS  Google Scholar 

  16. Wu, J.; Pawliszyn, J. (1994) Dual detection for capillary isoelectric focusing with refractive index gradient and absorption imaging detectors. Anal. Chem. 66, 867–873.

    Article  CAS  Google Scholar 

  17. Wu, J.; Pawliszyn, J. (1994) Application of capillary isoelectric focusing with absorption imaging detection to the analysis of proteins. J. Chromatogr. 657, 327–332.

    Article  CAS  Google Scholar 

  18. Vonguyen, L.; Wu, J.; Pawliszyn, J. (1994) Peptide mapping of bovine and chicken cytochrome c by capillary isoelectric focusing with universal concentration gradient imaging. J. Chromatogr. 657, 333–338.

    Article  CAS  Google Scholar 

  19. Ruyters, H.; van der Wal, S. (1994) Fully automated analysis of amino acid enantiomers by derivatization and chiral separation on a capillary electrophoresis instrument. J. Liq. Chromatogr. 17, 1883–1897.

    Article  CAS  Google Scholar 

  20. Emmer, A.; Roeraade, J. (1994) Capillary electrophoresis, combined with an on-line micro post-column enzyme assay. J. Chromatogr. 662, 375–381.

    Article  CAS  Google Scholar 

  21. Emmer, Å.; Roeraade, J. (1994) Micro enzymatic assay coupled to capillary electrophoresis via liquid junction. Chromatographia 39, 271–278.

    Article  CAS  Google Scholar 

  22. Miller, K.J.; Lytle, F.E. (1994) Enzymatic profiling of immobilized cells using CZE. Anal. Chem. 66, 2420–2423.

    Article  CAS  Google Scholar 

  23. Reinhoud, N.J.; Tjaden, U.R.; van der Greef, J. (1994) Automated on-capillary isotachophoretic reaction cell for fluorescence derivatization of small sample volumes at low concentrations followed by capillary zone electrophoresis. J. Chromatogr. 673, 255–266.

    Article  CAS  Google Scholar 

  24. Gilman, S.D.; Ewing, A.G. (1995) Analysis of single cells by capillary electrophoresis with on-column derivatization and laser-induced fluorescence detection. Anal. Chem. 67, 58–64.

    Article  CAS  Google Scholar 

  25. Huang, X.C.; Quesada, M.A.; Mathies, R.A. (1992) Capillary array electrophoresis using laser-excited confocal fluorescence detection. Anal. Chem. 64, 967–972.

    Article  CAS  Google Scholar 

  26. Takahashi, S.; Murakami, K.; Anazawa, T.; Kambara, H. (1994) Multiple sheath-flow gel capillary-array electrophoresis for multicolor fluorescent DNA detection. Anal. Chem. 66, 1021–1026.

    Article  CAS  Google Scholar 

  27. Ueno, K.; Yeung, E.S. (1994) Simultaneous monitoring of DNA fragments separated by electrophoresis in a multiplexed array of 100 capillaries. Anal. Chem. 66, 1424–1431.

    Article  CAS  Google Scholar 

  28. Bachteler, G.; Drexhage, K.-H.; Arden-Jacob, J.; Han, K.-T.; Köllner, M.; Müller, R.; Sauer, M.; Seeger, S.; Wolfrum, J. (1994) Sensitive fluorescence detection in capillary electrophoresis using laser diodes and multiplex dyes. J. Lumin. 62, 101–108.

    Article  CAS  Google Scholar 

  29. Mesaros, J.M.; Luo, G.; Roeraade, J.; Ewing, A.G. (1993) Continuous electrophoretic separations in narrow channels coupled to small-bore capillaries. Anal. Chem. 65, 3313–3319.

    Article  CAS  Google Scholar 

  30. Culbertson, C.T.; Jorgenson, J.W. (1994) Flow counterbalanced capillary electrophoresis. Anal. Chem. 66, 955–962.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Kitagishi, K. (1997). Advanced systems. In: Shintani, H., Polonský, J. (eds) Handbook of Capillary Electrophoresis Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1561-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1561-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7197-0

  • Online ISBN: 978-94-009-1561-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics