Skip to main content

Simultaneous Heat, Mass and Momentum Transfer during Biomass Drying

  • Chapter
Developments in Thermochemical Biomass Conversion

Abstract

A mathematical model is presented of transport phenomena and moisture evaporation of biofuels exposed to radiative/ convective heating. The medium is considered as a three-phase mixture: virgin solid with bound water to the FSP, capillary water that partially fills the pores, and bubbles containing inert gas and water vapor. Transport phenomena account for convection of capillary water, convection and diffusion of water vapor, surface diffusion of bound water, heat convection and conduction, liquid and gas phase pressure and velocity variations. The partial pressure of vapor is equal to its equilibrium value, which is a function of both temperature and moisture content. The high-temperature (600K) drying of 1 × 10-2 m thick particles, with an initial moisture content of 50% on dry basis, has been simulated by varying the external heat transfer coefficient and the permeabilities to liquid and gas flow. The results of the simulations are applied to understand the dynamics of thermal drying and to assess the validity limits of simplified theories of moisture evaporation, usually introduced in the mathematical description of moist particle pyrolysis and gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solantausta Y., Diebold J., Elliot D. C., Bridgwater A. V., Beckman D. (1994) Assessment of liquefaction and pyrolysis sysytems, VTT Research Notes 1573.

    Google Scholar 

  2. McCabe W., Smith J. C., and Harriot P. (1985) Unit Operations in Chemical Engineering, McGraw-Hill, 4th ed. Singapore.

    Google Scholar 

  3. Harmathy T. Z. (1969) Simultaneous moisture and heat transfer in porous systems with particular reference to drying, I & EC Fundamentals Vol. 8, pp. 92–103.

    Article  CAS  Google Scholar 

  4. Sahota M. S., Pagni P. J. (1979) Heat and mass transfer in porous media subject to fires, Int. J. Heat and Mass Transfer Vol. 22, pp. 1069–1081.

    Article  Google Scholar 

  5. White R. H., Schaffer E. L. (1981) Transient moisture gradient in fire-exposed wood slab, Wood and Fiber Vol. 13 pp. 17–38.

    Google Scholar 

  6. Dayan A., Cluekler E. L. (1982) Heat and mass transfer within an intensely heated concrete slab, Int. J. Heat and Mass Transfer Vol. 25, pp. 1461–1467.

    Article  CAS  Google Scholar 

  7. Fredlund B. (1993) Modelling of heat and mass transfer in wood structures during fire, Fire Safety Journal Vol. 20, pp.39–69.

    Article  Google Scholar 

  8. Beaumont O. Schwob Y. (1984) Influence of physical and chemical parameters on wood pyrolysis, Ind. Eng. Chem. Res. Vol. 23, pp. 637–641.

    CAS  Google Scholar 

  9. Gray M. R., Corcoran W. H., Gavalas G. R. (1985) Pyrolysis of a wood-derived material. Effects of moisture and ash content, Ind. Eng. Chem. Res. Vol. 24, pp. 646–651.

    CAS  Google Scholar 

  10. Chan W. R., Kelbon M., Krieger-Brockett B.(1988) Single-particle biomass pyrolysis: correlation of reaction products with process conditions, Ind. Eng. Chem. Res. Vol. 27, pp. 2261–2275.

    Article  CAS  Google Scholar 

  11. Simms D. L., Law M. (1967) The ignition of wet and dry wood by radiation, Combustion and Flame Vol. 11, pp. 377–388.

    Article  Google Scholar 

  12. Lee C. K., Diehl J. R. (1981) Combustion of irradiated dry and wet oak, Combustion and Flame Vol. 42, pp. 123–138.

    Article  CAS  Google Scholar 

  13. Saastamoinen J. (1994) Model for drying and pyrolysis in an updraft gasifier, Proc. of the Int. Conference on Advances in Thermo chemical Biomass Conversion, A. V. Bridgwater (Ed.), pp. 186–200, Blackie A & P.

    Google Scholar 

  14. Simmons W. W. (1983) Analysis of single particle wood combustion in convective flow, Ph.D. Thesis, University of Wisconsin - Madison.

    Google Scholar 

  15. Agarwal P. K., Genetti W. E., Lee Y. Y. and Prasad S. N. (1984) Model for drying fluidized-bed combustion of wet low-rank coals, Fuel Vol. 63, pp. 1020–1026.

    Article  CAS  Google Scholar 

  16. Chan W. C. R., Kelbon M., Krieger B. B. (1985) Modelling and experimental verification of chemical processes during pyrolysis of a large biomass particle, Fuel Vol. 64, pp. 1505–1513.

    Article  CAS  Google Scholar 

  17. Alves S. S., Figueiredo J. L. (1989) A model for pyrolysis of wet wood, Chemical Engineering Science Vol. 22, pp. 2861–2869.

    Article  Google Scholar 

  18. Plumb O. A., Spolek A., Olmstead B. A. (1985) Heat and mass transfer in wood during drying, Int. J. Heat and Mass Transfer Vol. 28, pp.1669–1678.

    Article  Google Scholar 

  19. Stanish M. A., Schajer G. S., Kayihan F. (1986) A mathematical model of drying for hygroscopic porous media, AIChE J. Vol. 32, pp. 1301–1311.

    Article  CAS  Google Scholar 

  20. Nasrallah S. B., Perre P. (1988) Detailed study of a model of heat and mass transfer during convective drying of porous media, Int. J. of Heat and Mass Transfer Vol. 31: 957–967.

    Article  Google Scholar 

  21. Perre P., De Giovanni A., Simulation par volumes finis des transferts couples en milieux poreux anisotropes: sechage du bois a basse et a haute temperature (1990) Int. J. of Heat and Mass Transfer Vol. 33, pp. 2463–2478.

    Article  Google Scholar 

  22. Berger D., Pei C. T. (1973) Drying of hygroscopic capillary porous solis - A theoretical approach, Int. J. of Heat and Mass Transfer Vol. 16, pp. 293–302.

    Article  CAS  Google Scholar 

  23. Kollmann F. F. P., Cote W. A., Jr. (1968) Principles of Wood Science and Technology, Springer-Verlag.

    Google Scholar 

  24. Kanury A. M., Blackshear P. L., Some problems pertaining to the problem of wood-burning (1970) Combustion Science and Technology Vol. 1, pp. 339–355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Di Blasi, C. (1997). Simultaneous Heat, Mass and Momentum Transfer during Biomass Drying. In: Bridgwater, A.V., Boocock, D.G.B. (eds) Developments in Thermochemical Biomass Conversion. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1559-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1559-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7196-3

  • Online ISBN: 978-94-009-1559-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics