Skip to main content

Genes controlling chromosome structure in Drosophila melanogaster

  • Chapter
Chromosomes Today
  • 134 Accesses

Abstract

The DNA of eukaryotic cells is condensed approximately 10,000-fold into metaphase chromosomes. This extremely tight DNA compaction is brought about with such an exquisite precision that metaphase chromosomes maintain, mitosis after mitosis, not only their relative size but also fine morphological features such as primary and secondary constrictions, differential condensation of euchromatin and heterochromatin, and chromosome banding. The early steps of DNA compaction, resulting in a 40-fold packing of this molecule, are rather well defined. They involve DNA—histone interactions producing the 11 nm nucleosomal fibre which is further coiled into a 30 nm solenoid (reviewed by McGhee and Felsenfeld, 1980). The higher order condensation of the solenoid is less understood. The most widely accepted model is that the solenoid fiber is folded into 60–100 kb loops anchored in a radial fashion to a ‘scaffold’ of nonhistone proteins (Marsden and Laemmli, 1979). This scaffold is thought to contain a loose network of discrete anchoring complexes which, upon histone depletion and fixation, may collapse into a continuous proteinaceous structure (for reviews see Paulson, 1988; Gasser et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avides, M.C. and Sunkel, CE. (1994) Isolation of chromosome-associated proteins from Drosophila melanogaster that bind a human centromeric DNA sequence. Journal of Cell Biology, 127, 1159–71.

    Article  PubMed  CAS  Google Scholar 

  • Axton, J.M., Dombradi, V., Cohen, P.T.W. and Glover, D.M. (1990) One of the protein phosphatase I isoenzymes in Drosophila is essential for mitosis. Cell, 63, 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Baker, B.S., Smith, D.A. and Gatti, M. (1982) Region-specific effects on chromosome integrity of mutations at essential loci in Drosophila melanogaster. Proceedings of the National Academy of Science USA, 79, 1205–09.

    Article  CAS  Google Scholar 

  • Baksa, K., Morawietz, H., Dombradi, V. et al. (1993) Mutations in the protein phosphatase 1 gene at 87B can differentially affect suppression of position effect variegation and mitosis in Drosophila melanogaster. Genetics, 135, 117–25.

    PubMed  CAS  Google Scholar 

  • Boyd, J.B., Golino, M.D., Ngugyen, T.G., Green, M.M. (1976) Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics, 84, 485–506.

    PubMed  CAS  Google Scholar 

  • Boyd, J.B. and Setlow, R.B. (1976) Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster. Genetics, 84, 507–26.

    PubMed  CAS  Google Scholar 

  • Carmena, M., Gonzalez, C., Casal, J, and Ripoll, P. (1991) Dosage dependence of maternal contribution to somatic cell division in Drosophila melanogaster. Development, 113, 1357–64.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W.C. (1991) Large scale chromosome structure and organization. Current Opinion in Structural Biology, 1, 237–44.

    Article  CAS  Google Scholar 

  • Eissenberg, J.C., James, T.C., Foster-Hartnett, D.M. et al. (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position effect variegation in Drosophila melanogaster. Proceedings of the National Academy of Science USA, 87, 9923–27.

    Article  CAS  Google Scholar 

  • Gasser, S.M., Amati, B.B., Cardenas, M.E. and Hofmann, J.F.-X (1989) Studies on scaffold attachment sites and their relation to genome function. International Review of Cytology, 119, 57–96.

    Article  PubMed  CAS  Google Scholar 

  • Gateff, E. (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science, 200, 1448–59.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M., Pimpinelli, S., Bove, C. et al. (1983a) Genetic control of mitotic cell division in Drosophila melanogaster, in Genetics—New Frontiers. Proceedings of the XV International Congress of Genetics, (eds V.L. Chopra, B.C. Joshi, R. P. Sharma and H.C. Bansal), Oxford and IBH Publishing Co., New Delhi, Vol.III, pp. 193–204.

    Google Scholar 

  • Gatti, M., Smith, D.A. and Baker, B.S. (1983b) A gene controlling condensation of heterochromatin in Drosophila melanogaster. Science, 221, 83–85.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M. and Baker, B.S. (1989) Genes controlling essential cell-cycle functions in Drosophila melanogaster. Genes and Development, 3, 438–53.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M. and Goldberg, M.L. (1991) Mutations affecting cell division in Drosophila. Methods in Cell Biology, 35, 543–86.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M., Bonaccorsi, S. and Pimpinelli, S. (1994) Looking at Drosophila mitotic chromosomes. Methods in Cell Biology, 44, 371–91.

    Article  PubMed  CAS  Google Scholar 

  • Gomes, R., Karess, R.E., Ohkura, H. et al. (1993) Abnormal anaphase resolution (aar): a locus required for progression through mitosis in Drosophila. Jounal of Cell Science, 104, 583–93.

    Google Scholar 

  • Grigliatti, T. (1991) Position-effect variegation — An assay for nonhistone chromosomal proteins and chromatin assembly and modifying factors. Methods in Cell Biology, 35, 587–627.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, R.S., Ink, H., Zitron, A.E. et al. (1993) There are two mechanims of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Developmental Genetics, 13, 440–67.

    Article  Google Scholar 

  • Holloway, S.L. (1995) Sister chromatid separation in vivo and in vitro. Current Opinion in Genetics and Development, 5, 243–48.

    Article  PubMed  CAS  Google Scholar 

  • Hulten, M. (1978) Selective somatic pairing and fragility at 1q12 in a boy with common variable immunodeficiency. Clinical Genetics, 14, 194 (abstract).

    Google Scholar 

  • Jones, R.S. and Gelbart, W.M. (1990) Genetic analysis of the Enhancer of zeste locus and its role in gene regulation in Drosophila melanogaster. Genetics, 126, 185–99.

    PubMed  CAS  Google Scholar 

  • Kellum, R. and Alberts, B.M. (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. Journal of Cell Science, 108, 1419–31.

    PubMed  CAS  Google Scholar 

  • Kellum, R., Raff, J.W. and Alberts, B.M. (1995) Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. Journal of Cell Science, 108, 1407–18.

    PubMed  CAS  Google Scholar 

  • Maraschio, P., Zuffardi, O., Dalla Fior, T. and Tiepolo, L. (1988) Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9 and 16 and facial anomalies: the ICF syndrome. Journal of Medical Genetics, 25, 173–80.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, M.P.F. and Laemmli, U.K. (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell, 17, 849–58.

    Article  PubMed  CAS  Google Scholar 

  • Masumoto, H., Masukata, H., Muro, Y. et al. (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromere satellite. Journal of Cell Biology, 109, 1963–73.

    Article  PubMed  CAS  Google Scholar 

  • Mayer-Jaekel, R.E., Ohkura, H., Gomes, R. et al. (1993) The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 72, 621–33.

    Article  PubMed  CAS  Google Scholar 

  • McGhee, J.D. and Felsenfeld, G. (1980). Nucleosome structure. Annual Review of Biochemistry, 49, 1119–56.

    Article  Google Scholar 

  • Muro, Y., Masumoto, H., Yod, K. et al. (1992) Centromere protein B assembles human centromeric α-satellite DNA at the 17-bp sequence, CENP-B box. Journal of Cell Biology, 116, 585–96.

    Article  PubMed  CAS  Google Scholar 

  • Ohkura, H., Kinoshita, N., Miyatani, S. et al. (1989) The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell, 57, 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Orr, W., Komitopoulou, K. and Kafatos, F.C. (1984) Mutants suppressing in trans chorion gene amplification in Drosophila. Proceedings of the National Academy of Science USA, 81, 3773–77.

    Article  CAS  Google Scholar 

  • Palmer, D.K., O’Day, K., Le Trong, H. et al. (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proceedings of the National Academy of Science USA, 88, 3734–38.

    Article  CAS  Google Scholar 

  • Paro, R., and Hogness, D.S. (1991) The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proceedings of the National Academy of Science USA, 88, 263–67.

    Article  CAS  Google Scholar 

  • Paulson, J.R. (1988) Scaffolding and radial loops: the structural organization of metaphase chromosomes, in Chromosomes and Chromatin (eds K.W. Adolph), CRC Press, Boca Raton, Vol. 3, pp. 3–36.

    Google Scholar 

  • Phillips, M.D. and Shearn, A. (1990) Mutations in polycombeotic, a Drosophila polycomb-group gene, cause a wide range of maternal and zygotic phenotypes. Genetics, 125, 91–101.

    PubMed  CAS  Google Scholar 

  • Pluta, A.F., Saitoh, N., Goldberg, I. and Earnshaw, W.C. (1992) Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. Journal of Cell Biology, 116, 1081–93.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J.R. and Hartwell, L.H. (1981) The Saccharomyces cerevisiae cell cycle, in Molecular biology of the Yeast Saccharomyces: Life, Cycle and Inheritance (eds J.N. Strathern, E.W. Jones and J.R. Broach), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 97–142.

    Google Scholar 

  • Radhakrishnan, V. and Sinha, P. (1987) Mitotic chromosome organization of neuroblastomas induced by the recessive oncogene lethal(2)giant larvae 4 of Drosophila melanogaster. Chromosoma, 96, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Rattner, J.B. (1991) The structure of mammalian centromere. BioEssays, 13, 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, G. and Spierer, P. (1992) Position effect variegation and chromatin proteins. BioEssays, 14, 605–12.

    Article  PubMed  CAS  Google Scholar 

  • Ripoll, P., Casal, J. and Gonzalez, C. (1987) Towards the genetic dissection of mitosis in Drosophila. BioEssays, 7, 204–10.

    Google Scholar 

  • Ripoll, P., Carmena, M. and Molina, I. (1992) Genetic analysis of cell division in Drosophila. Current Topics in Developmental Biology, 27, 275–307.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, W.S., Chue, C., Goebl, M. et al. (1993) Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. Journal of Cell Science, 104, 573–82.

    PubMed  Google Scholar 

  • Singh, P.B., Miller, J.R., Pearce, J. et al. (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Research, 19, 789–93.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.A., Baker, B.S. and Gatti, M. (1985) Mutations in genes encoding essential mitotic functions in Drosophila melanogaster. Genetics, 110, 647–70.

    PubMed  CAS  Google Scholar 

  • Strand, D., Raska, I. and Mechler B.M. (1994) The Drosophila lethal (2)giant larvae tumor suppressor protein is a component of the cytoskeleton. Journal of Cell Biology, 127, 1345–60.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, K.F. and Glass, C.A. (1991) CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma, 100, 360–70.

    Article  PubMed  CAS  Google Scholar 

  • Tiepolo, L., Maraschio, P., Gimelli, G. et al. (1978) Concurrent instability at specific sites of chromosomes 1, 9 and 16 resulting multibranched structures. Clinical Genetics, 14, 313–14.

    Article  Google Scholar 

  • Van Den Berg, D.J. and Francke, U. (1993) Roberts syndrome: a review of 100 cases and a new rating system for severity. American Journal of Medical Genetics, 47, 1104–23.

    Article  Google Scholar 

  • Wallrath, L.L. and Elgin, S.C.R. (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes and Development, 9, 1263–77.

    Article  PubMed  CAS  Google Scholar 

  • Weiler, K.S. and Wakimoto, B.W. (1995) Heterochromatin and gene expression in Drosophila. Annual Review of Genetics, in press.

    Google Scholar 

  • Wreggett, K.A., Hill, F., James, P.S. et al. (1994) A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenetics and Cell Genetics, 66, 99–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 The Organizing Committee of the 12th International Chromosome Conference, Madrid, Spain

About this chapter

Cite this chapter

Verni’, F., Somma, M.P., Gandhi, R., Goldberg, M.L., Gatti, M. (1997). Genes controlling chromosome structure in Drosophila melanogaster . In: Henriques-Gil, N., Parker, J.S., Puertas, M.J. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1537-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1537-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7186-4

  • Online ISBN: 978-94-009-1537-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics