Skip to main content

Proteins controlling sister-chromatid cohesion

  • Chapter
  • 134 Accesses

Abstract

Prior to the metaphase/anaphase transition of cell division the replicated copies of each chromosome, the sister chromatids, are attached to each other. We use the term ‘sister-chromatid cohesion’ to describe this physical association between the sister chromatids. Sister-chromatid cohesion is essential in mitosis to ensure that sister chromatids attach to microtubules from opposite spindle poles. Thus when segregation occurs, each daughter cell receives one copy of each chromosome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell, R.R. (1995) Meiosis I in human oocytes. Cytogenetics and Cell Genetics, 69, 266–72.

    Article  PubMed  CAS  Google Scholar 

  • Angell, R.R., Xian, J,. Keith, J. et al (1994) First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenetics and Cell Genetics, 65, 194–202

    Article  PubMed  CAS  Google Scholar 

  • Berger, B., Wilson, D.B., Wolf, E. et al (1995) Predicting coiled coils using pairwise—residue correlations. Proceedings of the National Academy of Science USA, 92, 8259–63.

    Article  CAS  Google Scholar 

  • Bickel, S.E. and Orr-Weaver. T.L. (1996) Holding chromatids together to ensure they go their separate ways. BioEssay, in press.

    Google Scholar 

  • Bickel, S.E., Wyman, D.W., Miyazaki, W.Y. et al (1995) Identification of ORD, a Drosophila protein required for sister-chromatid cohesion. EMBO Journal, in press.

    Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G. et al (1994) Green fluorescent protein as a marker for gene expression. Science, 263, 802–5.

    Article  PubMed  CAS  Google Scholar 

  • Clayberg, C. (1959) Cytogenetic studies of precocious meiotic centromere division in Lycopersicon esculentum Mill. Genetics, 44, 1335–46.

    PubMed  CAS  Google Scholar 

  • Cooke, C, Heck, M. and Earnshaw, W. (1987) The inner centromere protein (INCENP) antigens: Movement from inner centromere to midbody during mitosis. Journal of Cell Biology, 105, 2053—67.

    Article  PubMed  Google Scholar 

  • Davis, B. (1971) Genetic analysis of a meiotic mutant resulting in precocious sister-centromere separation in Drosophila melanogaster. Molecular and General Genetics, 113, 251–72.

    Article  CAS  Google Scholar 

  • Dobson, M.J., Pearlman, R.E., Karaiskakis, A. et al, (1994) Synaptonemal complex proteins: occurrence, epitope mapping, and chromosome disjunction. Journal of Cell Science, 107, 2749–60.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W. and Bernât, R. (1991) Chromosomal passengers: Toward an integrated view of mitosis. Chromosoma, 100, 139–46.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, W.C. and Cooke, C.A. (1991) Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. Journal of Cell Science, 98, 443–61.

    PubMed  Google Scholar 

  • Esponda, P. and Krimer, D.B. (1979) Development of the synaptonemal complex and polycomplex formation in three species of grasshoppers. Chromosoma, 73, 237–45.

    Article  Google Scholar 

  • German, J. (1979) Robert’s syndrome. I. Cytological evidence for a disturbance in chromatid pairing. Clinical Genetics, 16, 441–7.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, L.S.B. (1980) Mechanisms of chromosome orientation revealed by two meiotic mutants in Drosophila melanogaster, Chromosoma, 78, 79—111.

    Article  PubMed  Google Scholar 

  • Kerrebrock, A.W., Miyazaki, W.Y., Birnby, D. and Orr-Weaver, T.L. (1992) The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics, 130, 827–41.

    PubMed  CAS  Google Scholar 

  • Kerrebrock, A.W., Moore, D.P., Wu, J.S. and Orr-Weaver, T.L. (1995) MEI-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell, 83, 247—56.

    Article  PubMed  Google Scholar 

  • Lin, H.P. and Church, K. (1982) Meiosis in Drosophila melanogaster III. The effect of orientation disruptor (ord) on gonial mitotic and the meiotic divisions in males. Genetics, 102, 751–70.

    PubMed  CAS  Google Scholar 

  • Lupas, A., Van Dyke, M., Stock, J. (1991) Predicting coiled coils from protein sequences. Science, 252, 1162–4.

    Article  CAS  Google Scholar 

  • MacKay, A.M., Eckley, D.M., Chue, C. and Earnshaw, W.C. (1993) Molecular analysis of INCENPS (inner centromere proteins): Separate domains are required for association of microtubules during interphase and with the central spindle during anaphase. Journal of Cell Biology, 123, 373–85.

    Article  PubMed  CAS  Google Scholar 

  • Maguire, M.P. (1978) Evidence for separate genetic control of crossing over and chiasma maintenance in maize. Chromosoma, 65, 173–83.

    Article  Google Scholar 

  • Maguire, M.P. (1993) Sister chromatid association at meiosis. Maydica, 38, 93–106.

    Google Scholar 

  • Maguire, M.P., Paredes, A.M. and Riess, R.W. (1991) The desynaptic mutant of maize as a combined defect of synaptonemal complex and chiasma maintenance. Genome, 34, 879–87.

    Article  PubMed  CAS  Google Scholar 

  • Maguire, M.P., Riess, R.W. and Paredes, A.M. (1993) Evidence from a maize desynaptic mutant points to a probable role of synaptonemal complex central region components in provision for subsequent chiasma maintenance. Genome, 36, 797–807.

    Article  PubMed  CAS  Google Scholar 

  • Mason, J.M. (1976) Orientation disruptor (ord): A recombination-defective and disjunction-defective meiotic mutant in Drosophila melanogaster. Genetics, 84, 545–72.

    PubMed  CAS  Google Scholar 

  • Miyazaki, W.Y. and Orr-Weaver, T.L. (1992) Sister-chromatid misbehavior in Drosophila ord mutants. Genetics, 132, 1047—61.

    PubMed  Google Scholar 

  • Moens, P.B. and Church, K. (1979) The distribution of synaptonemal complex material in metaphase I bivalents of Locusta and Chloealtis (Orthoptera: Acrididae). Chromosoma, 73, 247–54.

    Article  Google Scholar 

  • Molnar, M., Bahler, J., Sipiczki, M. and Kohli, J. (1995) The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics, 141, 61–73.

    PubMed  CAS  Google Scholar 

  • Moreau, P.J.F., Zickler, D. and Leblon, G. (1985) One class of mutants with disturbed centromere cleavage and chromosome pairing in Sordaria macrospora. Molecular and General Genetics, 198, 189–97.

    Article  CAS  Google Scholar 

  • O’Shea, E.K., Klemm, J.D., Kim, P.S. and Alber, T. (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science, 254, 539–44.

    Article  PubMed  Google Scholar 

  • Orr-Weaver, T.L. (1995) Meiosis in Drosophila: Seeing is believing. Proceedings of the National Academy of Science USA, 92, 10443–9.

    Article  CAS  Google Scholar 

  • Rattner, J.B., Kingwell, B.G. and Fritzler, MJ. (1988) Detection of distinct structural domains within the primary constriction using autoantibodies. Chromosoma, 96, 360–7.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M. (1988) Regulation of enzyme levels by proteolysis: therole of PEST regions. Advances in Enzyme Regulation, 27, 135–51.

    Article  PubMed  CAS  Google Scholar 

  • Rockmill, B. and Roeder, G.S. (1988) RED1: A yeast gene required for the segregation of chromosomes during the reductional division of meiosis. Proceedings of the National Academy of Science USA, 85, 6057–61.

    Article  CAS  Google Scholar 

  • Rockmill, B and Roeder, G.S. (1990) Meiosis in asynaptic yeast. Genetics, 126, 563–74.

    PubMed  CAS  Google Scholar 

  • Rogers, S., Wells, R. and Rechsteiner, M. (1986) Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science, 234, 364–8.

    Article  PubMed  CAS  Google Scholar 

  • Ross, L.O., Bascom-Slack, C.A. and Dawson, D.S. (1996) Chiasmata, crossovers, and meiotic chromosome segregation. Advances in Genetics, in press.

    Google Scholar 

  • Sumner, A. (1991) Scanning electron microscopy of mammalian chromosomes from prophase to telophase. Chromosoma, 100, 410–8.

    Article  PubMed  CAS  Google Scholar 

  • Van Den Berg, D.J. and Francke, U. (1993) Roberts syndrome: A review of 100 cases and a new rating system for severity. American Journal of Medical Genetics, 47, 1104–23.

    Article  Google Scholar 

  • Wang. S. and Hazelrigg, T. (1994) Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature, 369, 400–3.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 The Organizing Committee of the 12th International Chromosome Conference, Madrid, Spain

About this chapter

Cite this chapter

Orr-Weaver, T.L., Moore, D.P., Kerrebrock, A.W., Bickel, S.E., Wyman, D.W. (1997). Proteins controlling sister-chromatid cohesion. In: Henriques-Gil, N., Parker, J.S., Puertas, M.J. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1537-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1537-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7186-4

  • Online ISBN: 978-94-009-1537-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics