Skip to main content

Transfection of cultured mosquito cells

  • Chapter

Abstract

The technology for introducing chimeric DNA constructs into cultured cells provides an important new approach for analysing diverse aspects of gene expression. In particular, transfection studies with cell lines from mosquitoes are beginning to provide insights into the structural and functional features of genes, and their regulatory elements that play essential roles in the physiological processes that maintain disease transmission cycles. Functional assays with transfected mosquito cells will further enable the investigator to develop novel approaches, such as antisense nucleic acid technologies and suicide selection systems, whose implementation has potential applications for molecular disruption of disease transmission in transgenic mosquitoes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubin, R.J., Weinfield, M. and Patterson, M.C. (1988) Factors influencing efficiency and reproducibility of polybrene-assisted gene transfer. Somatic Cell Molec. Genet. 14, 155–167.

    Article  CAS  Google Scholar 

  • Besansky, N.J., Bedell, J.A. and Mukabayire, O. (1994) Q: a new retrotransposon from the mosquito Anopheles gambiae. Insect Mol Biol.3, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Cammisa-Parks, H. Cisar, L.A., Kane, A. and Stollar, V. (1992) The complete nucleotide sequence of cell fusing agent (CFA): Homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology189, 511–524.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, J., Olson, K., Higgs, S. and Beaty, B. (1995) Molecular genetic manipulation of mosquito vectors. Annu. Rev. Entomol.40, 359–388.

    Article  PubMed  CAS  Google Scholar 

  • Di Nocera, P.P. and Dawid, I.B. (1983) Transient expression of genes introduced into cultured cells of Drosophila. Proc. Natl Acad. Sci. USA80, 7095–7098.

    Article  PubMed  Google Scholar 

  • Durbin, J.E. and Fallon, A.M. (1985) Transient expression of the chloramphenicol acetyltransferase gene in cultured mosquito cells. Gene36, 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Eagle, H. (1959) Amino acid metabolism in mammalian cell cultures. Science130, 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, A.M. (1984) Methotrexate resistance in cultured mosquito cells. Insect Biochem.14, 697–704.

    Article  CAS  Google Scholar 

  • Fallon, A.M. (1986) Factors affecting polybrene-mediated transfection of cultured Aedes albopictus (mosquito) cells. Exp. Cell Res.166, 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, A.M. (1989) Optimization of gene transfer in cultured insect cells. J. Tissue Culture Meth.12, 1–6.

    Article  Google Scholar 

  • Fallon, A.M. and Stollar, V. (1987) The biochemistry and genetics of mosquito cells in culture. In Advances in Cell Culture (K. Maramorosch, ed.), Vol. 5, pp. 97–137. Academic Press, New York.

    Google Scholar 

  • Gerenday, A., Park, Y.-J., Lan, Q. and Fallon, A.M. (1989) Expression of a heat-inducible gene in transfected mosquito cells. Insect Biochem.19, 679–686.

    Article  CAS  Google Scholar 

  • Gillies, S. and Stollar, V. (1982) Protein synthesis in lysates of Aedes albopictus cells infected with vesicular stomatitis virus. Mol Cell Biol2, 1174–1186.

    PubMed  CAS  Google Scholar 

  • Helgen, J.C. and Fallon, A.M. (1990) Polybrene-mediated transfection of cultured lepidopteran cells: Induction of a Drosophila heat shock promoter. In Vitro Cell. Dev.Biol.26, 731–736.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, A., Koo, R. and Stollar, V. (1977) Evolution and properties of Aedes albopictus cell cultures persistently infected with Sindbis virus. Virology82, 69–83.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, I. (1978) Isolation of a Singh’s Aedes albopictus cell clone sensitive to dengue and Chikungunya viruses. J. Gen. Virol.40, 531–544.

    Article  PubMed  CAS  Google Scholar 

  • Kjer, K.M. and Fallon, A.M. (1991) Efficient transfection of mosquito cells is influenced by the temperature at which DNA-calcium phosphate coprecipitates are prepared. Archs. Insect Biochem. Physiol.16, 189–200.

    Article  CAS  Google Scholar 

  • Kurtti, T.J. and Munderloh, U.G. (1994) Mosquito cell culture. In Advances in Cell Culture (K. Maramorosch, ed.), Vol. 3, pp. 259–302. Academic Press, New York.

    Google Scholar 

  • Lan, Q. and Fallon, A.M. (1990) Small heat shock proteins distinguish between two mosquito species and confirm identity of their cell lines. Am. J. Trop. Med. Hyg.43, 669–676.

    PubMed  CAS  Google Scholar 

  • Mazzacano, C.A. and Fallon, A.M. (1992) Thymidine kinase-deficient mutants of Aedes albopictus mosquito cells. In Vitro Cell Dev. Biol. 28A, 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Mazzacano, C.A. and Fallon, A.M. (1995) Evaluation of a viral thymidine kinase gene for suicide selection in transfected mosquito cells. Insect Mol Biol4, 125–134.

    Article  PubMed  CAS  Google Scholar 

  • McGrane, V., Carlson, J.O., Miller, B.R. and Beaty, B.J. (1988) Microinjection of DNA into Aedes triseriatus ova and detection of integration. Am. J. Trop. Med. Hyg.39, 502–510.

    PubMed  CAS  Google Scholar 

  • Mento, S.J. and Stollar, V. (1978) Isolation and partial characterization of drug-resistant Aedes albopictus cells. Somat. Cell Genet.4, 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L.H., Sakai, R.K., Romans, P., Gwadz, R. W., Kantoff, P. and Coon, H.G. (1987) Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science237, 779–781.

    Article  PubMed  CAS  Google Scholar 

  • Monroe, T.J. Muhlmann-Diaz, M.C., Kovach, M.J., Carlson, J.O., Bedford, J.S. and Beaty, B.J. (1992) Stable transformation of a mosquito cell line results in extraordinarily high copy numbers of the plasmid. Proc. Natl Acad. Sci. USA89, 5725–5729.

    Article  PubMed  CAS  Google Scholar 

  • Morris, A.C., Eggleston, P. and Crampton, J.M. (1989) Genetic transformation of the mosquito Aedes aegypti by micro-injection of DNA. Med. Vet. Entomol.3, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Morris, A.C., Pott, G.B., Chen, J. and James, A.A. (1995) Transient expression of a promoter-reporter construct in differentiated adult salivary glands and embryos of the mosquito Aedes aegypti. Am. J. Trop. Med. Hyg.52, 456–460.

    PubMed  CAS  Google Scholar 

  • Morris, A.C., Schaub, T.L. and James, A.A. (1991) FLP-mediated recombination in the vector mosquito, Aedes aegypti. Nucl. Acids Res.19, 5895–5900.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.-J. and Fallon, A.M. (1993) Transcripts from a mosquito dihydrofolate reductase gene: evidence for heterogeneity at the 5′ end. Insect Biochem. Molec. Biol23, 255–262.

    Article  CAS  Google Scholar 

  • Sarver, N. and Stollar, V. (1977) Sindbis virus-induced cytopathic effect in clones of Aedes albopictus cells. Virology80, 390–400.

    Article  PubMed  CAS  Google Scholar 

  • Shotkoski, F.A. and Fallon, A.M. (1990) Genetic changes in methotrexate-resistant mosquito cells. Archs. Insect Biochem. Physiol.15, 79–92.

    Article  CAS  Google Scholar 

  • Shotkoski, F.A. and Fallon, A.M. (1993) The mosquito dihydrofolate reductase gene functions as a dominant selectable marker in transfected cells. Insect Biochem. Molec. Biol.23, 883–893.

    Article  CAS  Google Scholar 

  • Shotkoski, F.A. and Fallon, A.M. (1994) Expression of an antisense dihydrofolate reductase transcript in transfected mosquito cells: Effects on growth and plating efficiency. Am. J. Trop. Med. Hyg.50, 433–439.

    PubMed  CAS  Google Scholar 

  • Singh, K.R.P. (1967) Cell cultures derived from Aedes albopictus (Skuse) and Aedes aegypti (L.) Curr. Sci.36, 506–508.

    Google Scholar 

  • Stiles, B., Heilmann, J., Sparks, R.B., Santoso, A. and Leopold, R.A. (1992) Transfection of cultured cells of the cotton boll weevil, Anthonomus grandis, with a heat-shock-promoter-chloramphenicol-acetyltransferase construct. Insect Mol. Biol1, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Tatem, J. and Stollar, V. (1986) Dominance of the CPE(+) phenotype in hybrid Aedes albopictus cells infected with Sindbis virus. Virus Res.5, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Walker, V.K. (1989) Gene transfer in insects. In Advances in Cell Culture (K. Maramorosch and G.H. Sato, eds), Vol. 7, pp. 87–124. Academic Press, New York.

    Google Scholar 

  • Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y. and Axel, R (1977). Transfer of purified Herpes virus thymidine kinase gene to cultured mouse cells. Cell11, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Willott, E., Trenczek, T., Thrower, L.W. and Kanost, M.R. (1994) Immunochemical identification of insect hemocyte populations: monoclonal antibodies distinguish four major hemo-cyte types in Manduca sexta. Eur. J. Cell Biol.65, 417–423.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Fallon, A.M. (1997). Transfection of cultured mosquito cells . In: Crampton, J.M., Beard, C.B., Louis, C. (eds) The Molecular Biology of Insect Disease Vectors. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1535-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1535-0_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7185-7

  • Online ISBN: 978-94-009-1535-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics