Skip to main content

Fluid Transport, Deformation and Metamorphism at Depth in a Collision Zone

  • Chapter
Fluid Flow and Transport in Rocks

Abstract

According to geological maps, the exposed continental crust contains abundant anhydrous granulite facies and igneous rocks. Exposed crustal sections (Fountain and Salisbury, 1981) suggest that such rocks are even more abundant in the deep continental crust. During continental collisions, anhydrous granulite facies and igneous rocks can be explaced into deep crustal root zones and become subjected to P—T conditions where their original mineral assemblage is not stable. Numerous field and petrological investigations have shown that anhydrous rocks can survive even eclogite facies conditions with their original mineralogy and structure intact (Wayte et al., 1989; Rubie, 1990). Experimental work and field examples suggest that overstepping of reaction boundaries by at least 5 kbar at temperatures as high as 700°C is possible without re-equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, T., Austrheim, H. and Burke, E. A. J. (1990) Fluid induced retrogression of granulites in the Bergen Arcs, Caledonides of W. Norway. Lithos, 27, 29–42.

    Article  Google Scholar 

  • Andersen, T. B. and Jamtveit, B. (1990) Uplift of deep crust during orogenic extensional collapse: a model based on field studies in the Sogn-Sunnfjord region of western Norway. Tectonics, 9, 1097–111.

    Article  Google Scholar 

  • Austrheim, H. (1991) Eclogite formation and the dynamics of crustal roots under continental collision zones. Terra Nova, 3, 163–9.

    Article  Google Scholar 

  • Austrheim, H. (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth and Planetary Science Letters, 81, 221–32.

    Article  Google Scholar 

  • Austrheim, H. and Boundy, T. M. (1994) Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science, 265, 82–3.

    Article  Google Scholar 

  • Austrheim, H., Erambert, M. and Boundy, T. M. (1996) Garnets recording deep crustal earthquakes. Earth and Planetary Science Letters, 136, 223–238.

    Article  Google Scholar 

  • Austrheim, H. and Griffin, W. L. (1985) Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen arcs, Western Norway. Chemical Geology, 50, 267–81.

    Article  Google Scholar 

  • Austrheim, H. and Robins, B. (1981) Reactions involving hydration of orthopyroxene in anorthosite-gabbro. Lithos, 14, 275–81.

    Article  Google Scholar 

  • Boundy, T. M, Fountain, D. M, Austrheim, H. (1992) Structural development and petrofabrics of eclogite facies shear zones, Bergen Arcs, western Norway: implications for deep crustal deformation processes. Journal of Metamorphic Geology, 10, 1–21.

    Article  Google Scholar 

  • Cohen, A. S., O Nions, R. K., Siegenthaler, R. and Griffin, W. L. (1988) Chronology of the pressuretemperature history recorded by a granulite terrain. Contributions to Mineralogy and Petrology, 98,303–11.

    Article  Google Scholar 

  • Comte, D. and Suarez, G. (1994) An inverted double seismic zone in Chile: Evidence of phase transition in the subducted slab. Science, 263, 212–15.

    Article  Google Scholar 

  • Deichmann, N. (1987) Focal depths of earthquakes in northern Switzerland. Annales. Geophysicae, 5B, 395–402.

    Google Scholar 

  • Engvik, A. K. (1995) Processing of Precambrian crust in the root zone of the Caledonian mountain chain. Terra Abstract, Suppl. no. 1 to Terra Nova 7, 114.

    Google Scholar 

  • Erambert, M. and Austrheim, H. (1993) The effect of fluid and deformation on zoning and inclusion pattern in poly-metamorphic garnets. Contributions to Mineralogy and Petrology, 115, 204–14.

    Article  Google Scholar 

  • Etheridge, M. A., Wall, V. J. and Vernon, R. H. (1983) The role of the fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology, 1, 205–26.

    Article  Google Scholar 

  • Fountain, D. M. and Salisbury, M. H. (1981) Exposed cross-sections through the continental crust: implications for crustal structure, petrology and evolution. Earth and Planetary Science Letters, 56, 263–77.

    Article  Google Scholar 

  • Frost, B. R. and Bucher, K. (1994) Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective. Tectonophysics, 231, 293–309.

    Article  Google Scholar 

  • Green, H. W. (1994) Solving the paradox of deep earthquakes. Scientific American, 271, 3, 50–7.

    Google Scholar 

  • Gromet, L. and Andersen, T. B. (1994) Eclogite inclusions in granite gneisses: Preservation of Precambrian intrusive relations in the eclogitized crust of Sunnfjord, S.W. Norway. Abstract GS A—annual meeting, Seattle.

    Google Scholar 

  • Holland, T. J. B. (1979) High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria, Journal of Geology, 87, 1–28.

    Article  Google Scholar 

  • Hurukawa, N. and Imoto, M. (1993) A Non Double-Couple Earthquake in a Subducting Oceanic Crust of the Phillipine Sea Plate. Journal of Phys. Earth, 41, 257–69.

    Article  Google Scholar 

  • Jamtveit, B., Bucher-Nurminen, K. and Austrheim, H. (1990) Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen Arcs, Western Norway. Contributions to Mineralogy and Petrology, 104, 184–93.

    Article  Google Scholar 

  • Krogh, E. J. (1980) Geochemistry and petrology of glaucophane-bearing eclogites and associated rocks from Sunnfjord, western Norway. Lithos, 13, 355–80.

    Article  Google Scholar 

  • Krutov, G. A. (1936) Dashkessarite — a new chlorine amphibole of the hastingsite group. Bulletin of the Academy of Sciences. USSR, Classe des Sciences Mathematiques et Naturelles Serija Geologicesuaja, 341.

    Google Scholar 

  • Laubscher, H. (1988) Material balance in alpine orogeny. Geolgical Society of America Bulletin, 100, 1313–28.

    Article  Google Scholar 

  • Le Pichon, X., Fournier, M. and Jolivet, L. (1992) Kinematics, Topography, Shortening and extrusion in the Indian-Eurasia Collision. Tectonics, 11, 1085–98.

    Article  Google Scholar 

  • McCaig, A. M. (1988) Fluid circulation in fault zones. Geology, 16, 867–70.

    Article  Google Scholar 

  • Newton, R. C. (1990) Fluids and shear zones in the deep crust. Tectonophysics, 182, 21–37.

    Article  Google Scholar 

  • Phillipot, P. (1993) “Crack seal” vein geometry in eclogite rocks. Geodynamica Acta (Paris), 1, 3, 171–81.

    Google Scholar 

  • Rubie, D. C. (1990) Role of kinetics in the formation and preservation of eclogites, in Eclogite Fades Rocks (ed. D. A. Carswell), Blackie.

    Google Scholar 

  • Sanford, R. F. (1981) Mineralogical and chemical effects of hydration reactions and applications on serpentization. American Mineralogist, 66, 290–97.

    Google Scholar 

  • Selverstone, J., Franz, G., Thomas, S. and Getty, S. (1992) Fluid variability in 2 Gpa eclogites as an indicator of fluid behavior during subduction. Contributions to Mineralogy and Petrology, 112, 341–57.

    Article  Google Scholar 

  • Sibson, R. F. (1981) Fluid flow accompanying faulting: Field evidence and models, in Earthquakes Prediction (eds D. W. Simpson and P. G. Richards), Maurice Ewing Series, vol. 4. American Geophysical Union, 593–603.

    Google Scholar 

  • Sibson, R. H. (1987) Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology, 15, 701–04.

    Article  Google Scholar 

  • Strehlau, J. (1995) Deep crustal earthquakes: seismogenic faulting in the lower continental crust. Terra Nova Abstract, 7, 280.

    Google Scholar 

  • Thompson, A. B. and Connolly, J. A. D. (1992) Migration of metamorphic fluid: some aspects of mass and heat transfer. Earth Science Reviews, 32, 107–21.

    Article  Google Scholar 

  • Wayte, G. J., Worden, R. H., Rubie, D. C. and Droop, G. T. R. (1989) A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid. Contributions to Mineralogy and Petrology, 101, 426–37.

    Article  Google Scholar 

  • Wheeler, J. (1987) The significance of grain-scale stresses in kinetics of metamorphism. Contributions to Mineralogy and Petrology, 97, 397–404.

    Article  Google Scholar 

  • Yardley, B. W. D. (1986) Fluid migration and veining in the Connemara schist, Ireland, in Fluid-Rock Interaction during Metamorphism (eds J. V. Walther and B. J. Wood), 5, Springer-Verlag, New York, pp. 109–31.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Austrheim, H., Engvik, A.K. (1997). Fluid Transport, Deformation and Metamorphism at Depth in a Collision Zone. In: Jamtveit, B., Yardley, B.W.D. (eds) Fluid Flow and Transport in Rocks. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1533-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1533-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7184-0

  • Online ISBN: 978-94-009-1533-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics