Skip to main content

Flow and Transport During Contact Metamorphism and Hydrothermal Activity: Examples from the Oslo Rift

  • Chapter

Abstract

Emplacement of a magma into a relatively colder environment leads to contact metamorphism and almost invariably to flow of fluids and associated advective transport. The fluids may be derived from the cooling magma (magmatic fluids), from near-surface environments (meteoric or sea water) or from metamorphic devolatilization reactions (metamorphic fluids). Fluid flow around cooling intrusives plays an important role as a mechanism of heat transport on a global scale; nearly 25% of the heat loss from the earth’s surface is transported by circulating fluids above magma chambers at mid-ocean ridges (Sclater, Jaupart and Galson, 1980). Moreover, mass transport or metasomatic effects of fluid flow observed in contact metamorphic environments are numerous and sometimes of great economic importance (see review by Barton et al., 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abart, R. R. and Sperb, R. (submitted) Grain-scale stable isotopic disequilibrium during fluid/rock interaction I: analytical solutions for advectivedispersive tracer transport and coupled first-order kinetic mineral-fluid exchange. American Journal of Science.

    Google Scholar 

  • Alt, J. C., Honnorez, J., Laverne, C. and Emmermann, R. (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504 B: Mineralogy, chemistry, and evolution of seawater-basalt interactions. Journal of Geophysical Research, 91, 10309–35.

    Article  Google Scholar 

  • Andersen, T. (1990) Melt—mineral—fluid interaction in peralkaline silicic intrusions in the Oslo Rift, Southeast Norway IV: Fluid inclusions in the Sande nordmarkite. Norges Geologiske Undersokelser Bulletin, 317, 41–54.

    Google Scholar 

  • Barnette, D. E. and Bowman, J. R. (1995) Coupled mass transport and kinetically limited isotope exchange mechanisms. Geology, 23, 225–8.

    Article  Google Scholar 

  • Barton, M. D., Staude, J. -M., Smow, E. A. and Johnson, D. A. (1991) Aureole systematics, in Contact Metamorphism (ed. D. A. Kerrick), Reviews in Mineralogy, 26, 723–847.

    Google Scholar 

  • Bear, J. and Buchlin, J. -M. (1991) Modelling and applications of transport phenomenae in porous media, Kluwer, Dordrecht, Netherlands.

    Google Scholar 

  • Bickle, M. J. (1992) Transport mechanisms by fluidflow in metamorphic rocks: Oxygen and strontium decoupling in the Trois Seigneurs Massif — a consequence of kinetic dispersion? American Journal of Science, 292, 289–316.

    Article  Google Scholar 

  • Bickle, M. J. and Baker, J. (1990a) Migration of reaction and isotopic fronts in infiltration zones: assessments of fluid flux in metamorphic terrains. Earth and Planetary Science Letters, 98, 1–13.

    Article  Google Scholar 

  • Bickle, M. J. and Baker, J. (1990b) Advective—diffusive transport of isotopic fronts: an example from Naxos, Greece. Earth and Planetary Science Letters, 97, 78–93.

    Article  Google Scholar 

  • Bickle, M. J. and Chapman, H. J. (1990) Strontium and oxygen isotope decoupling in the Hercynian Trios Seigneurs Massif, Pyrenees: evidence for fluid circulation in a brittle regime. Contributions to Mineralogy and Petrology, 104, 332–47.

    Article  Google Scholar 

  • Bickle, M. J. and Chapman, H. J., Wickham, S. M. and Peters, M. T. (1995) Strontium and oxygen isotope profiles across marble—silicate contacts, Lizzies Basin, East Humboldt Range, Nevada: Constraints on metamorphic fluid flow. Contributions to Mineralogy and Petrology, 121, 400–13.

    Article  Google Scholar 

  • Bickle, M. J. and McKenzie, D. (1987) The transport of heat and matter by fluid during metamorphism. Contributions to Mineralogy and Petrology, 95, 384–92.

    Article  Google Scholar 

  • Bickle, M. J. and Teagle, D. A. H. (1992) Strontium alteration in the Trodoos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. Earth and Planetary Science Letters, 113, 219–37.

    Article  Google Scholar 

  • Bjørlykke, K. (1974) Depositional history and geochemical composition of Lower Palaeozoic epicontinental sediments from the Oslo Region. Norges Geologiske Undersøkelser Bulletin, 305, 1–81.

    Google Scholar 

  • Bodnar, R. J., Burnham, C. J. and Sterner, S. M. (1985) Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 49, 1861–74.

    Article  Google Scholar 

  • Bowman, J. R., Willett, S. D. and Cook, S. J. (1994) Oxygen isotopic transport and exchange during fluid flow: One-dimensional models and applications. American Journal of Science, 294, 1–55.

    Article  Google Scholar 

  • Brandeis, G. and Jaupart, C. (1987) Crystal sizes in intrusions of different dimensions: Constraints on the cooling regime and the crystallization kinetics, in Magmatic Processes: Physiochemical Principles (ed. B. O. Mysen), The Geochemical Society, New York, pp. 307–18.

    Google Scholar 

  • Candela, P. A. (1991) Physics of aqueous phase evolution in plutonic environments. American Mineralogist, 76, 1081–91.

    Google Scholar 

  • Cann, J. R. and Strens, M. R. (1989) Modelling periodic megaplume emission by black smoker systems. Journal of Geophysical Research, 94, 12227–37.

    Article  Google Scholar 

  • Cann, J. R., Strens, M. R. and Rice, A. (1985) A simple magma-driven thermal balance model for the formation of volcanogenic massive sulfides. Earth and Planetary Science Letters, 76, 123–34.

    Article  Google Scholar 

  • Cartwright, I. (1994) The 2-dimensional pattern of metamorphic fluid flow at Mary Cathleen, Australia: Fluid focussing, transverse dispersion, and implications for modelling fluid flow. American Mineralogist, 79, 526–35.

    Google Scholar 

  • Cathles, L. M. (1977) An analysis of the cooling of intrusives by ground-water convection which includes boiling. Economic Geology, 72, 804–26.

    Article  Google Scholar 

  • Clemens, J. D. (1984) Water contents of silicic to intermediate magmas. Lithos, 17, 273–87.

    Article  Google Scholar 

  • Dahlgren, S. (1991) A U-Pb and Lu-Hf study of zircon in the early Permian Larvik plutonic complex, Oslo rift, south Norway. GAC-MAC-SEG Program with abstracts, 16 (abstract).

    Google Scholar 

  • Deines, P. and Gold, D. P. (1969) The change in C and O isotopic composition during contact metamorphism of the Trenton limestone by the Mount Royal pluton. Geochimica et Cosmochimica Acta, 33, 421–4.

    Article  Google Scholar 

  • Einaudi, M. T., Meinert, L. D. and Newberry, R. J. (1981) Skarn Deposits. Economic Geology, 75th Anniversary volume, 317–91.

    Google Scholar 

  • Ferry, J. M. and Dipple, G. M. (1991) Fluid flow, mineral reactions, and metasomatism. Geology, 19, 211–4.

    Article  Google Scholar 

  • Ferry, J. M. and Dipple, G. M. (1992) Models for coupled fluid flow, mineral reactions and isotopic alteration during contact metamorphism. The Notch Peake aureole, Utah. American Mineralogist, 77, 577–91.

    Google Scholar 

  • Fletcher, R. C. and Hofmann, A. W. (1974) Simple models of diffusion and combined diffusion and combined diffusion-infiltration metasomatism, in Geochemical Transport and Kinetics (eds A. W. Hofmann, B. J. Giletti, H. S. Jr. Yoder and R. A. Yund), Carnegie Institute, Washington, pp. 243–59.

    Google Scholar 

  • Fournier, R. O. (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annual Reviews Earth Planetary Sciences, 17, 13–53.

    Article  Google Scholar 

  • Furlong, K. P., Hanson, R. B. and Bowers, J. R. (1991) Modeling thermal regimes, in Contact Metamorphism (ed. D. M. Kerrick), Reviews in Mineralogy, 26, 437–507.

    Google Scholar 

  • Gerdes, M., Baumgartner, L. P. and Person, M. (1995) Stochastic permeability models of fluid flow during contact metamorphism. Geology, 23, 945–8.

    Article  Google Scholar 

  • Goldschmidt, V. M. (1911) Die Kontaktmetamorphose im Kristianiagebiet. Shifter fra Norges Vitenskaps Akademi, Oslo, MatematiskNaturvitenskapelig Klasse 11.

    Google Scholar 

  • Haas, J. R., Shock, E. L. and Sassani, D. C. (1995) Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the REE at high pressure and temperatures. Geochimica et Cosmochimica Acta, 59, 4329–50.

    Article  Google Scholar 

  • Hanson, R. B. (1995) The hydrodynamics of contact metamorphism. Geological Society of American Bulletin, 107, 595–611.

    Article  Google Scholar 

  • Hansteen, T. H. and Burke, E. A. J. (1990) Melt—mineral—fluid interaction in peralkaline silicic intrusions in the Oslo rift, Southeast Norway. II. High-temperature fluid inclusions in the Eikeren-Skrim complex. Norges Geologiske Undersekelser Bulletin, 417, 15–32.

    Google Scholar 

  • Heard, H. C. and Raleigh, C. B. (1972) Steady state flow of marble at 500°C to 800°C, Geological Society of America Bulletin, 83, 935–56.

    Article  Google Scholar 

  • Henley, R. W. and McNabb, A. (1978) Magmatic vapour plumes and ground-water interaction in porphyry copper emplacement. Economic Geology, 73, 1–20.

    Article  Google Scholar 

  • Hofman, A. (1972) Chromatographic theory of infiltration metasomatism and its application to feldspars, American Journal of Science, 27a, 69–90.

    Article  Google Scholar 

  • Ihlen, P. M. (1986) The geological evolution and metallogeny of the Oslo Paleorift, in Metallogeny associated with the Oslo Paleorift (eds S. Olerud and P. M. Ihlen). Sveriges Geologiska Undersoekning Series, 59, 6–17.

    Google Scholar 

  • Ihlen, P. M. and Vokes, F. M. (1978) Metallogeny (in the Oslo rift), in The Oslo Paleorift: A Review and guide to excursions (eds J. A. Dons and B. T. Larsen), Norges Geologiske Undersokelser Bulletin, 45, 75–90.

    Google Scholar 

  • Jamtveit, B. (1991) Oscillatory zonation patterns in hydrothermal grossular—andradite garnets: Nonlinear behaviour in regions of immiscibility. American Mineralogist, 76, 1319–27.

    Google Scholar 

  • Jamtveit, B. and Andersen, T. B. (1992) Morphological instabilities during rapid growth of metamorphic garnets. Physics and Chemistry of Minerals, 19, 176–84.

    Article  Google Scholar 

  • Jamtveit, B. and Andersen, T. (1993) Contact metamorphism of layered shale—carbonate sequences in the Oslo rift: III. The nature of skarn-forming fluids. Economic Geology, 88, 830–49.

    Article  Google Scholar 

  • Jamtveit, B., Bucher-Nurminen, K. and Stijfhoorn, D. E. (1992) Contact metamorphism of layered shale—carbonate sequences in the Oslo rift: I. Buffering, infiltration and the mechanisms of mass transport. Journal of Petrology, 33, 377–422.

    Google Scholar 

  • Jamtveit B., Grorud, H. F. and Bucher-Nurminen, K. (1992) Contact metamorphism of layered shalecarbonate sequences in the Oslo rift: II. Migration of isotopic and reaction fronts around cooling plutons. Earth and Planetary Science Letters, 114, 131–48.

    Article  Google Scholar 

  • Jamtveit, B. and Hervig, R. L. (1994) Mass transport and chemical reaction kinetics in hydrothermal systems recorded by intracrystalline mineral zonation. Science, 263, 505–8.

    Article  Google Scholar 

  • Jamtveit, B., Ragnarsdottir, K. V. and Wood, B. J. (1995) On the origin of zoned grossular andradite garnets in hydrothermal systems, European Journal of Mineralogy, 7, 1399–1410.

    Google Scholar 

  • Jamtveit B., Wogelius, R. A. and Fraser, D. G. (1993) Zonation patterns of skarn garnets: Records of hydrothermal system evolution. Geology, 21, 113–6.

    Article  Google Scholar 

  • Keppler, H. and Wyllie, P. J. (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109, 139–50.

    Article  Google Scholar 

  • Larsen, B. T. (1978) Krokskogen lava area. The Oslo Paleorift A review and guide to excursions. Norges Geologiske Undersokelser Bulletin, 337, 143–68.

    Google Scholar 

  • Lassey, K. R. and Blattner, P. (1988) Kinetically controlled oxygen isotope exchange between fluid and rock in one-dimensional advective flow. Geochimica et Cosmochimica Acta, 52, 2169–75.

    Article  Google Scholar 

  • Lindgren, W. (1933) Mineral Deposits (4th edn), McGraw-Hill, New York.

    Google Scholar 

  • McKenzie, D. (1987) The compaction of sedimentary and igneous rocks. Journal of the Geological Society of London, 144, 299–307.

    Article  Google Scholar 

  • Mearns, E. W. (1986) Sm-Nd ages for Norwegian garnet perioditites, in Second International Eclogite Conference (ed. W. L. Griffin). Lithos, 19, 269–278.

    Google Scholar 

  • Nabelek, P. I. (1991) Stable isotope monitors, in Contact Metamorphism (ed. D. M. Kerrick), Reviews in Mineralogy, 26, 395–435.

    Google Scholar 

  • Neumann, E. R., Pallesen, S. and Andresen, P. (1986) Mass estimates of cumulates and residues after anatexis in the Oslo graben. Journal of Geophysical Research, 91, 11629–40.

    Article  Google Scholar 

  • Norton, D. and Knight, J. (1977) Transport phenomenaes in hydrothermal systems: Cooling plutons. American Journal of Science, 277, 937–81.

    Article  Google Scholar 

  • Norton, D. and Taylor, H. P. (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard intrusion. Journal of Petrology, 20, 421–86.

    Google Scholar 

  • Oftedahl, C. W. (1960) Permian focus and structures of the Oslo region, in Geology of Norway (ed. O. Holtedahl) Norges Geologiske Undersekelser, 208, 298–343.

    Google Scholar 

  • Olsen, K. I. and Griffin, W. L. (1984) Fluid inclusion studies of the Drammen granite, Oslo Paleorift, Norway. I. Microthermometry. Contributions to Mineralogy and Petrology, 87, 1–14.

    Article  Google Scholar 

  • Pedersen, L. E., Heaman, L. M. and Holm, P. M. (1995) Further constraints on the temporal evolution of the Oslo Rift from precise U-Pb zircon dating in the Siljan-Skrim area. Lithos, 34, 301–15.

    Article  Google Scholar 

  • Phillips, O. M. (1991) Flow and Reactions in Permeable Rocks, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Raade, G. (1972) Mineralogy of the Miarolitic cavities in the plutonic rocks of the Oslo region, Norway, Mineralogical Record, 3, 7–11.

    Google Scholar 

  • Rasmussen, E., Neumann, E. R., Andersen, T., Sundvoll, B., Fjerdingstad, V. and Stabel, A. (1988) Petrogenetic processes associated with intermediate and silicic magmatism in the Oslo rift, south-east Norway. Mineralogical Magazine, 52, 293–302.

    Article  Google Scholar 

  • Schiffman, D. and Smith, B. M. (1988) Petrology and oxygen isotope geochemistry of a fossil seawater hydrothermal system within the Soten Graben, Northern Trodos Ophiolite, Cyprus. Journal of Geophysical Research, 93, 4612–24.

    Article  Google Scholar 

  • Sclater, J. G., Jaupart, C. and Galson, D. (1980) The heat flow through oceanic and continental crust and the loss of heat from the earth. Reviews in Geophysics and Space Physics, 18, 269–311.

    Article  Google Scholar 

  • Shmulovich, K. I., Tkachenko, S. I. and Plyasunova, N. V. (1994) Phase equilibria in fluid systems at high pressures and temperatures, in Fluids in the Crust, (eds K. I. Shmulovich and B. W. D. Yardley), Chapman & Hall, London, pp. 193–214.

    Google Scholar 

  • Skinner, B. J. (1979) The many origins of hydrothermal mineral deposits, in Geochemistry of Hydrothermal Ore Deposits, 2nd edn (ed. H. L. Barnes), John Wiley & Sons, New York, pp. 1–21.

    Google Scholar 

  • Sundvoll, B., Neumann, E. R., Larsen, B. T. and Tuen, E. (1990) Age relations among Oslo Rift magmatic rocks: implications for tectonic and magmatic modelling. Tectonophysics, 178, 67–87.

    Article  Google Scholar 

  • Tait, S., Jaupart, C. and Vergniolle, S. (1989) Pressure, gas content and eruption periodicity of a shallow crystallizing magma chamber. Earth and Planetary Science Letters, 92, 107–23.

    Article  Google Scholar 

  • Taylor, H. P. Jr. and Forester, R. W. (1979) An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55 m.y. old fossil hydrothermal system. Journal of Petrology, 20, 355–419.

    Google Scholar 

  • Taylor, B. E. and O’Neil, J. R. (1977) Stable isotope studies of metasomatic skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada, Contributions to Mineralogy and Petrology, 64, 1–49.

    Article  Google Scholar 

  • Trønnes, R. G. and Brandon, A. D. (1992) Origin of peraluminuous high-silica granites in the Oslo Rift, Norway. Contributions to Mineralogy and Petrology, 109, 275–94.

    Article  Google Scholar 

  • Valley, J. W. (1986) Stable isotope geochemistry of metamorphic rocks, in Stable Isotopes in High Temperature Geological Processes, (eds J. W. Valley, H. P. Taylor and J. R. O’Neill), Reviews of Mineralogy, 16, 445–81.

    Google Scholar 

  • Vogt, J. H. L. (1907) Über die Erzgange zu Traag in Bamble, Norwegen. Zeitschrift zur Praktische Geologie, 15, 210–16.

    Google Scholar 

  • Walder, I. F. (1992) Geology and geochemistry of molybdenum mineralization of the Drammen granite, permian Oslo rift, Norway. PhD thesis, New Mexico Institute of Mining and Technology, Socorro, New Mexico.

    Google Scholar 

  • Walther, J. V. and Orville, P. M. (1982) Volatile production and transport in regional metamorphism. Contributions to Mineralogy and Petrology, 79, 252–7.

    Article  Google Scholar 

  • Wheatcraft, S. W. and Tyler, S. W. (1988) An explanation of scale-dependent dispersivity aquifers using concepts of fractal geometry. Water Resources Research, 24, 566, 578.

    Google Scholar 

  • Yardley, B. W. D. and Lloyd, G. E. (1995) Why metasomatic fronts are really metasomatic sides. Geology, 23, 53–6.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Jamtveit, B., Grorud, H.F., Ragnarsdottir, K.V. (1997). Flow and Transport During Contact Metamorphism and Hydrothermal Activity: Examples from the Oslo Rift. In: Jamtveit, B., Yardley, B.W.D. (eds) Fluid Flow and Transport in Rocks. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1533-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1533-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7184-0

  • Online ISBN: 978-94-009-1533-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics