Skip to main content

Simulations of One- and Two-Phase Flow in Fractures

  • Chapter

Abstract

Faults and fractures play an important, if not dominant, role in the transport of fluids through rocks. Under a wide range of circumstances the fluid flow process is concentrated onto a network of interconnected fractures. However, the flow of fluids through highly permeable rocks may be seriously impeded if fractures have become filled by impermeable materials resulting from a combination of mechanical phenomena and chemical processes, generally involving the flow of water carrying dissolved or colloidal minerals, into, along and out of the fracture. In either case the geometry of individual fractures, the transport within or across individual fractures, their interactions with the surrounding rocks, and the manner in which they are connected, is essential to a good overall understanding of fluid transport phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, pp. 216–28.

    Google Scholar 

  • Boger, F. (1993) Rough surfaces, synthesis, analysis, visualization and applications. PhD thesis, Department of Physics, University of Oslo.

    Google Scholar 

  • Brown, S. R. and Scholz, C. H. (1985) Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research, 90, 12575–82.

    Article  Google Scholar 

  • Centrella, J. and Wilson, J. R. (1984) Planar Numerical Cosmology II: The difference equations and numerical tests. Astrophysics Journal (Suppl.), 54, 229–49.

    Article  Google Scholar 

  • Døvie, M. (1993) Dispersion in 2-d homogeneous and inhomogeneous porous media. Master thesis. Department of Physics, University of Oslo.

    Google Scholar 

  • Engøy, T., Måløy, K. J., Hansen, A. and Roux, S. (1994) Roughness of two-dimensional cracks in wood. Physical Review Letters, 73, 834–7.

    Article  Google Scholar 

  • Feder, J. (1988) Fractals, Plenum Press, New York.

    Google Scholar 

  • Hawley, J. F., Smarr, L. and Wilson, J. R. (1984) A numerical study of nonspherical black hole accretion. II. Finite differencing and code calibration. Astrophysics Journal (Suppl.), 55, 211–46.

    Article  Google Scholar 

  • Hele-Shaw, H. S. (1898) Investigation of the nature of surface resistance of water and of stream-line motion under certain experimental conditions. Transactions of the Institution of Naval Architects, 40, 21–46.

    Google Scholar 

  • Isichenko, M. B. (1992) Percolation, statistical topography, and transport in random media. Reviews of Modern Physics, 64, 961–1043.

    Article  Google Scholar 

  • Landau, L. D. and Lifshitz, E. M. (1987) Fluid Mechanics (2nd edn), Pergamon Press, Oxford, pp. 58–68.

    Google Scholar 

  • Lenormand, R. and Bories, S. (1980) Description d’un mécanisme de connexion de liason destiné a l’etude du drainage avec piégeage en milieu poreux. Comptes Rendus de l’Academie des Science de Paris, 291, 279–83.

    Google Scholar 

  • Mandelbrot B. B. (1982) The fractal geometry of Nature, Freeman, New York.

    Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E. and Paullay, A. J. (1984) Fractal character of fracture surfaces on metals. Nature, 308, 721–2.

    Article  Google Scholar 

  • Manning, C. (1994) Fractal clustering in metamorphic veins. Geology, 22, 335–8.

    Article  Google Scholar 

  • Martys, N. S. (1994) Fractal growth in hydrodynamic dispersion through random porous media. Physics Review, E50, 335–42.

    Google Scholar 

  • Meakin, P. (1993) The growth of rough surfaces and interfaces. Physics Reports, 235, 189–289.

    Article  Google Scholar 

  • Meakin, P., Wagner, G., Feder, J. and Jøssang, T. (1993) Simulations of migration, fragmentation and coalescence of non-wetting fluids in porous media. Physica A, 200, 241–9.

    Article  Google Scholar 

  • Oxaal, U., Flekkøy, E. G. and Feder, J. (1994) Irreversible dispersion at a stagnation point: Experiments and Lattice Boltzmann Simulations. Physics Review Letters, 72, 3514–17.

    Article  Google Scholar 

  • Peyret, R. and Taylor, T. D. (1983) Computational Methods for Fluid Flow, Springer-Verlag, New York.

    Google Scholar 

  • Saupe, D. (1988) Random fractal algorithms, in The Science of Fractal Images (eds H.-O. Peitgen and D. Saupe) Springer-Verlag, Berlin, pp. 71–136.

    Chapter  Google Scholar 

  • Scheidegger, A. E. (1974) The Physics of Flow Through Porous Media (3rd edn), University of Toronto Press, Toronto.

    Google Scholar 

  • Schmittbuehl, J., Schmitt, F. and Scholz, C. (1995) Scaling invariance of crack surfaces. Journal of Geophysical Research, 100, 5953–73.

    Article  Google Scholar 

  • Scott, P. A., Engelder, T. and Mecholsky Jr., J. J. (1992) The correlation between fracture-toughness anisotropy and crack surface morphology of siltstones in the Ithaca formation, Appalachian basin, in Fault Mechanics and Transport Properties of Rocks (eds B. Evans and T.-F. Wong), Cambridge University Press, Cambridge, pp. 341–70.

    Chapter  Google Scholar 

  • Voss, R. F. (1985) Random fractal forgeries, in Fundamental Algorithms for Computer Graphics (ed. R. A. Earnshaw), Springer-Verlag, Berlin, pp. 805–35.

    Google Scholar 

  • Wilkinson, D. and Willemsen, J. F. (1983) Invasion percolation: A new form of percolation theory. Journal of Physics A: Mathematical and General Physics, 16, 3365–76.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Meakin, P., Rage, T., Wagner, G., Feder, J., Jøssang, T. (1997). Simulations of One- and Two-Phase Flow in Fractures. In: Jamtveit, B., Yardley, B.W.D. (eds) Fluid Flow and Transport in Rocks. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1533-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1533-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7184-0

  • Online ISBN: 978-94-009-1533-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics