Skip to main content

Abstract

In this chapter we will describe the development of a multiaxial testing facility. The equipment was designed to supply basic fatigue data and to permit a comparison with the proposed theories. However, before embarking on the detailed description of the test facility, it is appropriate to provide a background to various test methods and their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wöhler’s Experiments on the Fatigue of Metals, Engineering, 11, 1871, p. 199.

    Google Scholar 

  2. Lanza, G. (1886) Strength of shafting subjected to both twisting and bending. Trans. ASME, 8, 130–44.

    Google Scholar 

  3. Gough, H.J. (1935) The strength of metals under combined alternating stresses. Proc. Inst. Meal. Engrs., 131, 3–54.

    Article  Google Scholar 

  4. Gough, H.J. (1950) Engineering steels under combined cyclic and static stresses. J. Appl. Mech., Trans. ASME, 72, 113–25.

    Google Scholar 

  5. Gough, H.J. and Pollard, H.V. (1935) The effect of specimen form on the resistance of metals to combined alternating stresses, Proc. Inst. Mech. Engrs., 132, 549–73.

    Article  Google Scholar 

  6. Das, P.K., Chandler, D.C. and Foster, B.K. (1973) The plastic bending of beams and their failure by low-cycle fatigue. J. Engng. Mater. Technol, Trans. ASME, 95, 161–9.

    Article  Google Scholar 

  7. Ives, K.S., Kooistra, L.F. and Tucker, J.T. (1966) Equi-biaxial low-cycle fatigue properties of typical pressure-vessel steels. J. Basic Engng., Trans. ASME, 88, 745–54.

    Google Scholar 

  8. Matake, T. (1977) An explanation on fatigue limit under combined stress. Bulletin JSME, 20, 257–63.

    Article  Google Scholar 

  9. Zamrik, S.Y. and Shabara, M.A. (1977) The effect of stress ratio on fatigue crack growth in a biaxial stress field. J. Pressure Vessel Technol., Trans. ASME, 99, 137–43.

    Article  Google Scholar 

  10. Pascoe, K.J. and DeVilliers, J.W.R. (1967) Low-cycle fatigue of steels under biaxial straining. J. Strain Anal., 2, 117–26.

    Article  Google Scholar 

  11. Wilson, J.H. and White, D.J. (1971) Cruciform specimens for biaxial fatigue tests. J. Strain Anal., 6, 27–37.

    Article  Google Scholar 

  12. Parsons, M.W. and Pascoe, K.J. (1975) Development of a biaxial fatigue testing rig. J. Strain Anal., 10, 1–9.

    Article  Google Scholar 

  13. Tanaka, K., Hoshide, T., Yamada, A. and Taira, S. (1974) Fatigue crack propagation in biaxial stress fields. Fatigue Engng. Mater. Struct., 2, 181–94.

    Article  Google Scholar 

  14. Kitagawa, H., Yuuki, R. and Tohgo, K. (1974) A fracture mechanics approach to high-cycle fatigue crack growth under in-plane biaxial loads. Fatigue Engng. Mater. Struct., 2, 195–206.

    Article  Google Scholar 

  15. Makinde, A., Thibodeau, L. and Neale, K.W. (1992) Development of an apparatus for biaxial testing using cruciform specimens. Exp. Mech. SESA, 32, 138–44.

    Article  Google Scholar 

  16. Boëhler, J.P., Demmerle, S. and Koss, S. (1994) A new direct biaxial testing machine for anisotropic materials. Exp. Mech. SESA, 34,1–9.

    Article  Google Scholar 

  17. Findley, W.N. (1954) Experiments in fatigue under ranges of stress in torsion and axial load from tension to extreme compression. Proc. ASTM, 54, 836–52.

    Google Scholar 

  18. Taira, S., Inoue, T. and Yoshida, T. (1969) Low-Cycle Fatigue Under Multiaxial Stresses (in the Case of Combined Cyclic Tension-Compression and Cyclic Torsion at Room Temperature). Proc. 12th Japan Congress on Material Research. Soc. Mater. Sci., Kyoto, Japan, pp. 50–5.

    Google Scholar 

  19. Brown, M.W. and Miller, K.J. (1979) Biaxial cyclic deformation behaviour of steels. Fatigue Engng. Mater. Struct., 1, 93–106.

    Article  Google Scholar 

  20. Ellyin, F., Lefebvre, D. and Neale, K.W. (1980) High-strain biaxial fatigue of 2024-T351 aluminium under combined axial stress and torsion, in Advances in Materials Technology in the Americas -1980, Vol. 2, American Society of Mechanical Engineers, New York, 17–21.

    Google Scholar 

  21. Hua, C.T. and Socie, D.F. (1984) Fatigue damage in 1045 steel under constant amplitude biaxial loading. Fatigue Engng. Mater. Struct., 7, 165–79.

    Article  Google Scholar 

  22. Tanaka, K., Matsuoka, S. and Kimura, M. (1984) Fatigue strength of 7075-T6 aluminum alloy under combined axial loading and torsion. Fatigue Engng. Mater, and Struct., 7, 195–211.

    Article  Google Scholar 

  23. Kalluri, S. and Bonacuse, P.J. (1993) In-plane and out-of-phase axial-torsional fatigue behavior of Haynes 188 Superalloy at 760°C, in Advances in Multiaxial Fatigue, ASTM STP1191 (eds D.L. McDowell and R. Ellis), American Society for Testing and Materials, Philadelphia, PA, 133–50.

    Chapter  Google Scholar 

  24. McDiarmid, D.L. (1972) Failure criteria and cumulative damage in fatigue under multiaxial stress conditions. Ph.D. Thesis, The City University, London.

    Google Scholar 

  25. Rotvel, J. (1970) Biaxial fatigue tests with zero mean stresses using tubular specimens. Int. J. Mech. Sci., 12, 597–613.

    Article  Google Scholar 

  26. Havard, D.G. and Topper, T.H. (1969) Biaxial Fatigue of 1018 Mild Steel at Low Endurance. Proc 1st Int. Conf. on Pressure Vessel Technology, Delft, The Netherlands, Vol. II. American Society of Mechanical Engineers, New York, pp. 1267–77.

    Google Scholar 

  27. Andrews, J.M.H. and Ellison, E.G. (1973) A testing rig for cycling at high biaxial strains. J. Strain Anal., 8, 168–75.

    Article  Google Scholar 

  28. Ellyin, F. and Valaire, B. (1982) High Strain Biaxial Fatigue Test Facility. Proc. 1982 Joint Conf. on Experimental Mechanics, Hawaii, May 1982, SESA-JSME, Society for Experimental Stress Analysis, Brookfield Center, CT, pp. 136–43.

    Google Scholar 

  29. Brown, M.W. and Miller, K.J. (eds) (1988) Biaxial and Multiaxial Fatigue, EGF 3, Mechanical Engineering Publication, London.

    Google Scholar 

  30. Lefebvre, D., Chebl, C. and Khazzari, E. (1984) Multiaxial High-Strain Fatigue of A-516 Gr. 70 Steel. Proc. 2nd Conf. on Fatigue Threshold, Birmingham, UK.

    Google Scholar 

  31. Manson, W. and Delaney, W.J. (1921) Alternating Combined Stress Experiments, Reports of the British Association for the Advancement of Science, pp. 329–41.

    Google Scholar 

  32. Nishihara, T. and Kawamoto, M. (1995) The Strength of Metals Under Combined Alternating Bending and Torsion with Phase Difference, Memoirs, College of Engineering, Kyoto University, 11, 145–9.

    Google Scholar 

  33. Dietmann, H. and Lempp, W. (1974) Untersuchengen zum festigkeitsverhalten von stahlen bei mechrachsiger phasenverschobener daverschwing-beansprunchung. Construction, 31, H5.

    Google Scholar 

  34. Dietmann, H. and Lempp, W. (1974) Untersuchengen zum festigkeitsverhalten von stahlen bei mechrachsiger phasenverschobener daverschwing-beansprunchung. Construction, 31, 191–200.

    Google Scholar 

  35. Lee, D.N. (1985) A criterion for fully-reversed out-of-phase torsion and bending, in Multiaxial Fatigue, ASTM STP 853 (eds K.J. Miller and M.W. Brown), American Society for Testing and Materials, Philadelphia, PA, pp. 553–68.

    Chapter  Google Scholar 

  36. McDiarmid, D.L. (1985) Fatigue under out-of-phase biaxial stresses of different frequencies, in Multiaxial Fatigue, ASTM STP 853 (eds K.J. Miller and M.W. Brown), American Society for Testing and Materials, Philadelphia, PA, pp. 553–68.

    Google Scholar 

  37. Taira, S., Inoue, T. and Yoshida, T. (1968) Low Cycle Fatigue under Multiaxial Stresses (in the Case of Combined Cyclic Tension-Compression and Cyclic Torsion Out-of-Phase at Elevated Temperature). Proc. 11th Japan Congress on Material Research. Soc. Mater. Sci., Kyoto, Japan, pp. 60–5.

    Google Scholar 

  38. Zamrik, S.Y. and Frismuth, R.E. (1973) The effect of out-of-phase biaxial strain cycling on low cycle fatigue. Exp. Mech. SESA, 13, 204–8.

    Article  Google Scholar 

  39. Kanazawa, K., Miller, K.J. and Brown, M.W. (1977) Low cycle fatigue under out-of-phase loading conditions. J. Engng. Mater. Technol, Trans. ASME, 99, 222–8.

    Article  Google Scholar 

  40. Jordan, E.H., Brown, M.W. and Miller, K.J. (1985) Fatigue under severe nonproportional loading, in Multiaxial Fatigue, ASTM STP 83 (eds K.J. Miller and M.W. Brown), American Society for Testing and Materials, Philadelphia, PA, pp. 569–85.

    Chapter  Google Scholar 

  41. Sonsino, CM. and Grubisic, V. (1985) Fatigue behaviour of cyclically softening and hardening steels under multiaxial elastic-plastic deformation, in Multiaxial Fatigue, ASTM STP 83 (eds K.J. Miller and M.W. Brown), American Society for Testing and Materials, Philadelphia, PA, pp. 586–604.

    Chapter  Google Scholar 

  42. Andrews, R.M. and Brown, M.W. (1988) Elevated temperature out-of-phase fatigue behaviour of a stainless steel, in Biaxial and Multiaxial Fatigue (eds M.W. Brown and K.J. Miller), Mechanical Engineering Publications, London, pp. 641–58.

    Google Scholar 

  43. Fatemi, A. and Socie, D. (1988) A critical plane approach to Multiaxial Fatigue damage including out-of-phase loading. Fatigue Fract. Engng. Mater. Struct., 11, 149–65.

    Article  Google Scholar 

  44. Ellyin, F., Golos, K. and Xia, Z. (1991) In-phase and out-of-phase Multiaxial Fatigue. J.Engng. Mater. Technol., Trans. ASME, 113, 112–18.

    Article  Google Scholar 

  45. Xia, Z. and Ellyin, F. (1991) Nonproportional multiaxial cyclic loading: Experiments and constitutive modelling. J. Appl. Mech., Trans. ASME, 58, 317–25.

    Article  Google Scholar 

  46. Ellyin, F. and Wolodko, J. (1996) Testing facilities for multiaxial loading of tubular specimens, in Multiaxial Fatigue and Deformation Testing Techniques, ASTM STP 1269 (eds S. Kalluri and P.J. Bonacuse), American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Ellyin, F. (1997). Multiaxial experimental facilities. In: Fatigue Damage, Crack Growth and Life Prediction. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1509-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1509-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7175-8

  • Online ISBN: 978-94-009-1509-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics