Skip to main content

Abstract

The fundamental driving force for the development of thermal barrier coatings has been the continuing quest for ever higher temperatures in gas turbines. Over the period 1940–1970, the temperature capability of superalloys for gas turbine blades, which is defined in terms of 100 h life at 20000 psi (138 MPa) stress, was increased from approximately 1400°F (760°C) to 1900 °F (1040 °C) [1]. This was a costly process which required the development of numerous generations of new superalloys. It was a necessary and successful step, however, in producing the highly reliable and efficient gas turbine engines that we know today. Between 1940 and 1970, higher temperature superalloys, along with improved engine design, allowed specific fuel consumption to be reduced by more than half, thrust-to-weight ratios to be tripled, and time between overhaul to be increased from less than 100 h to over 12000 h [1]. A recent review of the effect of materials on current and future gas turbine performance has been given by Kool [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fawley, R.W. (1972) Superalloy progress, in The Superalloys (eds C.T. Sims and W.C. Hagel), Wiley, New York, pp. 3–29.

    Google Scholar 

  2. Kool, G.A. (1994) Current and future materials in advanced gas turbine engines. ASME Publication 94-GT-475, ASME, New York.

    Google Scholar 

  3. Cole, G.S. and Cremisio, R.S. (1972) Solidification and structure control in superalloys, in The Superalloys (eds C.T. Sims and W.C. Hagel), Wiley, New York, pp. 479–508.

    Google Scholar 

  4. Plunkett, J.D. (1964) NASA Contributions to the technology of inorganic coatings. Technology Survey NASA SP-5014, NASA, Washington D.C, p. 145.

    Google Scholar 

  5. Miller, R.A. (1987) Surf. Coat. Technol., 30(1), 1–11.

    Article  CAS  Google Scholar 

  6. Miller, R.A. (1990) Assessment of fundamental materials needs for thick thermal barrier coatings (TTBCs) for truck diesel engines, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, U.S. Dept. of Energy, Washington D.C. pp. II7-II34.

    Google Scholar 

  7. Nagaraj, B.A., Wortman, D.V. and Lindblad, N. (1992) Private communication, General Electric Aircraft Engines.

    Google Scholar 

  8. Kvernes, I. (1987) Ceramic coatings as thermal barriers in diesel and gas turbine components, in High Tech Ceramics — Part C: Materials Science Monographs 38C (ed P. Vincenzini), Elsevier, Amsterdam, pp. 2519–36.

    Google Scholar 

  9. Plunkett, J.D. (1964) NASA contributions to the technology of inorganic coatings. Technology Survey NASA SP-5014, NASA, Washington D.C., p. 123.

    Google Scholar 

  10. Richerson, D.W. (1982) Modern Ceramic Engineering: Properties, Processing, and Use in Design, Marcel Dekker, New York, pp. 38–45 and 139–142.

    Google Scholar 

  11. Vogan, J.W. and Stetson, A.R. (1979) Thick ceramic coating development for industrial gas turbines, in Proceedings of the First Conference on Advanced Materials for Alternative Fuel Capable Directly Fired Heat Engines (eds J.W. Fairbanks and J. Stringer), Castine ME, U.S. Dept. of Energy, Washington D.C, pp. 542–81.

    Google Scholar 

  12. Bratton, R.J., Lau, S.K., Lee, S.Y. and Andersson, C.A. (1979) Ceramic coating evaluations and developments, in Proceedings of the First Conference on Advanced Materials for Alternative Fuel Capable Directly Fired Heat Engines (eds J.W. Fairbanks and J. Stringer), Castine ME, U.S. Dept. of Energy, Washington D.C, pp. 582–605.

    Google Scholar 

  13. Grot, A.S. and Martyn, J.K. (1981) Ceram. Bull., 60(8), 807–11.

    CAS  Google Scholar 

  14. Bratton, R.J., Lau, S.K., Andersson, C.A. and Lee, S.Y. (1982) Studies of thermal barrier coatings for heat engines, in Proceedings of the Second Conference on Advanced Materials for Alternative-Fuel-Capable Heat Engines (eds J.W. Fairbanks and J. Stringer), Monterey CA, Electric Power Research Institute, Palo Alto, CA, Ch. 6, pp. 82–101.

    Google Scholar 

  15. Hirschfeld, D.A, Liu, D.M. and Brown, J.J. (1992) CMZP — a new high temperature thermal barrier material, in Proceedings of the 4th International Symposium on Ceramic Materials and Components for Engines (eds R. Carlsson, T. Johansson and L. Kahlman), Gothenburg, Sweden, Elsevier Applied Science, London, pp. 372–80.

    Google Scholar 

  16. Anonymous (1993) Amer. Ceram. Soc. Bull., 72(10), 22.

    Google Scholar 

  17. Hellman, J.R. and Stubican, V.S. (1983) J. Amer. Ceram. Soc., 66(4), 260–4.

    Article  Google Scholar 

  18. Yoshimura, M. (1988) Ceram. Bull., 67(12), 1950–5.

    CAS  Google Scholar 

  19. Sheu, T.-S., Tien, T.-Y. and Chen, I.-W. (1992) J. Amer. Ceram. Soc., 75(5), 1108–16.

    Article  CAS  Google Scholar 

  20. Sasaki, K., Bohac, P. and Gauckler, L.J. (1993) J. Amer. Ceram. Soc., 76(3), 689–98.

    Article  CAS  Google Scholar 

  21. Nettleship, I. and Stevens, R. (1987) Int. J. High Tech. Ceram., 3, 1–32.

    Article  CAS  Google Scholar 

  22. Scott, H.G. (1975) J. Mater. Sci., 10, 1527–35.

    Article  CAS  Google Scholar 

  23. Jue, J.F., Chen, J. and Virkar, A.V. (1991) J. Amer. Ceram. Soc., 74(8), 1811–20.

    Article  CAS  Google Scholar 

  24. Garvie, R.C. (1978) J. Phys. Chem., 82(2), 218–24.

    Article  CAS  Google Scholar 

  25. Heuer, A.H., Claussen, N, Kriven, W.M. and Ruhle, M. (1982) J. Amer. Ceram. Soc., 65(12), 642–50.

    Article  CAS  Google Scholar 

  26. Heuer, A.H., Chaim, R. and Lanteri, V. (1988) Review: phase transformations and microstructural characterization of alloys in the Y2O3-ZrO2 system, in Advances in Ceramics, Vol. 24: Science and Technology of Zirconia III (eds S. Somiya, N. Yamamoto and H. Yanagida), The American Ceramic Society, Westerville OH, pp. 3–20.

    Google Scholar 

  27. Ruh, R., Garrett, H.J., Domagala, R.F. and Patel, V.A. (1977) J. Amer. Ceram. Soc., 60(9/10), 399–403.

    Article  CAS  Google Scholar 

  28. Igawa, N., Ishii, Y., Nagasaki, Y. et al. (1993) J. Amer. Ceram. Soc., 76(10), 2673–6.

    Article  CAS  Google Scholar 

  29. Bhattacharjee, S., Syamaprasad, U., Galgali, R.K. and Mohanty, B.C. (1992) Mater. Lett., 15, 281–4.

    Article  CAS  Google Scholar 

  30. Miller, R.A., Garlick, R.G. and Smialek, J.L. (1983) Ceram. Bull., 62(12), 1355–8.

    CAS  Google Scholar 

  31. Hernandez, M.T., Jurado, J.R., Duran, P. and Fierro, J.L.G. (1991) J. Amer. Ceram. Soc., 74(6), 1254–8.

    Article  CAS  Google Scholar 

  32. Virkar, A.V. and Matsumoto, R.L.K. (1986) J. Amer. Ceram. Soc., 69(10), C224–6.

    Article  CAS  Google Scholar 

  33. Noma, T., Yoshimura, M., Somiya, S. et al. (1988) Stability of diffusionlessly transformed tetragonal phases in rapidly quenched ZrO2-Y2O3, in Advances in Ceramics, Vol. 24: Science and Technology of Zirconia III (eds S. Somiya, N. Yamamoto and H. Yanagida), The American Ceramic Society, Westerville OH, pp. 377–84.

    Google Scholar 

  34. Valzah, J.R. and Eaton, H.E. (1991) Surf. Coat. Technol., 46, 289–300.

    Article  Google Scholar 

  35. Brandon, J.R. and Taylor, R. (1991) Surf. Coat. Technol., 46, 75–90.

    Article  CAS  Google Scholar 

  36. Shankar, N.R., Herman, H., Singhal, S.P. and Berndt, C.C. (1984) Thin Solid Films, 119, 159–71.

    Article  CAS  Google Scholar 

  37. Rigney, D.V., Mantkowski, T.E. and Froning, M.J. (1987) Influence of raw materials on the performance characteristics of ceramic coatings, in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. V45–60.

    Google Scholar 

  38. Kvernes, I., Solberg, J.K. and Lillerud, K.E. (1979) Ceramic coatings on diesel engine components, in Proceedings of the First Conference on Advanced Materials for Alternative Fuel Capable Directly Fired Heat Engines (eds J.W. Fairbanks and J. Stringer), Castine ME, Dept. of Energy, Washington D.C., pp. 233–57.

    Google Scholar 

  39. Schmid, H.K. (1987) J. Amer. Ceram. Soc., 70(5), 367–76.

    Article  CAS  Google Scholar 

  40. Miller, R.A., Smialek, J.L. and Garlick, R.G. (1981) Phase stability in plasma-sprayed, partially stabilized zirconia-yttria, in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia (eds A.H. Heuer and L.W. Hobbs), The American Ceramic Society, Westerville OH, pp. 241–53.

    Google Scholar 

  41. Taylor, R, Brandon, J.R. and Morrell, P. (1992) Surf. Coat. Technol., 50, 141–9.

    Article  CAS  Google Scholar 

  42. Froning, M.J. and Jayaraman, N. (1986) Quantitative phase analysis by X-ray diffraction of ZrO2-8% Y2O3 system, in High Temperature Coatings (eds M. Khobaib and R.C. Krutenat), The Metallurgical Society, Warrendale PA, pp. 179–91.

    Google Scholar 

  43. Srinivasan, R., De Angelis, R.J., Ice, G. and Davis, B.H. (1991) J. Mater. Res., 6(6), 1287–92.

    Article  CAS  Google Scholar 

  44. Howard, C.J. and Hill, R.J. (1991) J. Mater. Sci., 26, 127–34.

    Article  CAS  Google Scholar 

  45. Scardi, P., Lutterotti, L. and Galvanetto, E. (1993) Surf. Coat. Technol., 61, 52–9.

    Article  CAS  Google Scholar 

  46. Srinivasan, R., Harris, M.B., Simpson, S.F. et al. (1988) J. Mater. Res., 3(4), 787–97.

    Article  CAS  Google Scholar 

  47. Hamilton, J.C. and Nagelberg, A.S. (1984) J. Amer. Ceram. Soc., 67(10), 686–90.

    Article  CAS  Google Scholar 

  48. Strangman, T.E. (1985) Thin Solid Films, 127, 93–105.

    Article  CAS  Google Scholar 

  49. Bennett, A. (1986) Mater. Sci. Technol., 2, 257–61.

    CAS  Google Scholar 

  50. Burgel, R. and Kvernes, I. (1986) Thermal barrier coatings, in Proceedings of the Conference on High Temperature Alloys for Gas Turbines and Other Applications (eds W. Betz et al.), Liège, D. Reidel, Dordrecht, pp. 327–56.

    Google Scholar 

  51. Goward, G.W. (1987) Seventeen years of thermal barrier coatings, in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. III1–9.

    Google Scholar 

  52. Rhys-Jones, T.N. and Toriz, F.C. (1989) High. Temp. Technol., 7(2), 73–81.

    CAS  Google Scholar 

  53. Scott, K.T. and Restall, J.E. (1988) Some aspects of the development and performance of ceramic thermal barrier coatings for gas turbines, in Thermal Spray Technology, New Ideas and Processes. Proceedings of the National Thermal Spray Conference (ed D.L. Houck), Cincinnati OH, ASM International, Metals Park OH, pp. 255–61.

    Google Scholar 

  54. Movchan, B.A, Malashenko, I.S., Yakovchuk, K.Y. et al. (1994) Surf Coat. Technol., 67, 55–63.

    Article  CAS  Google Scholar 

  55. Patten, J.W., Prater, J.T, Hays, D.D., Moss, R.W. and Fairbanks, J.W. (1980) Thin Solid Films, 73, 463–70.

    Article  CAS  Google Scholar 

  56. Hocking, M.G., Vasantasree, V. and Sidky, P.S. (1989) Metallic & Ceramic Coatings: Production, High Temperature Properties & Applications, Wiley, New York. pp. 252–67.

    Google Scholar 

  57. Hecht, R.J. (1987) Plasma spray processing and equipment requirements for thermal barrier coatings in advanced heat engines, in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. V1–7.

    Google Scholar 

  58. Taylor, T.A., Appleby, D.L., Weatherill, A.E. and Griffiths, J. (1990) Surf. Coat. Technol., 43/44, 470–80.

    Article  Google Scholar 

  59. Joshi, S.V. and Srivastava, M.P. (1993) Surf. Coat. Technol., 56, 215–24.

    Article  CAS  Google Scholar 

  60. Stecura, S. (1985) Optimization of the NiCrAl-Y/ZrO2-Y2O3 thermal barrier system. NASA Tech. Memo. 86905, NASA, Cleveland OH.

    Google Scholar 

  61. McPherson, R. (1981) Thin Solid Films, 83, 297–310.

    Article  CAS  Google Scholar 

  62. McPherson, R. (1989) Surf. Coat. Technol., 39/40, 173–81.

    Article  Google Scholar 

  63. Eaton, H.E. and Novak, R.C. (1987) Surf. Coat. Technol., 32, 227–36.

    Article  CAS  Google Scholar 

  64. Miller, R.A., Brindley, W.J., Goedjen, J.G. et al. (1994) The effect of silica on the cycle life of a zirconia-yttria thermal barrier coatings, in Proceedings of the 7th National Thermal Spray Conference, 20–24 June 1994, Boston MA, pp. 49–54.

    Google Scholar 

  65. Crabos, F., Monge-Cadet, P. and Piraggi, B. (1995) Influence of powder microstructure on the thermal cycling behavior of ZrO2–8% Y2O3 plasma coating, in Elevated Temperature Coatings: Science and Technology I (eds N.B. Dahotre, J.M. Hampikian and J.J. Stiglich), The Metallurgical Society, Warrendale, PA. pp. 63–72.

    Google Scholar 

  66. Stecura, S. (1987) Thin Solid Films, 150, 15–40.

    Article  CAS  Google Scholar 

  67. Siemers, P.A. and McKee, D.W. (1982) U.S. Patent 4,328,285.

    Google Scholar 

  68. Brandon, J.R. and Taylor, R. (1991) Surf. Coat. Technol., 46, 91–101.

    Article  CAS  Google Scholar 

  69. Jones, R.L. (1989) Surf. Coat. Technol., 39/40, 89–96.

    Article  Google Scholar 

  70. Jones, R.L. and Mess, D. (1992) J. Amer. Ceram. Soc., 75(7), 1818–21.

    Article  CAS  Google Scholar 

  71. Jacobson, N.S. (1991) Thermodynamic properties of some metal oxide-zirconia systems. NASA Tech. Memo. 102351, NASA, Cleveland OH.

    Google Scholar 

  72. Wortman, D.J., Nagaraj, B.A. and Duderstadt, E.C. (1989) Mater. Sci. Engng, A121, 433–40.

    Article  Google Scholar 

  73. Miller, R.A. and Brindley, W.J. (1992) Plasma sprayed thermal barrier coatings on smooth surfaces, in Proceedings of International Thermal Spray Conference and Exposition, Orlando FL, ASM International, Metals Park OH, pp. 493–98.

    Google Scholar 

  74. Stecura, S. (1980) Thin Solid Films, 73, 481–9.

    Article  CAS  Google Scholar 

  75. Stecura, S. (1989) Thin Solid Films, 182, 121–39.

    Article  CAS  Google Scholar 

  76. Huntz, A.M. (1987) Mater. Sci. Engng, 87, 251–60.

    Article  CAS  Google Scholar 

  77. Smeggil, J.G. (1987) Mater. Sci. Engng, 87, 261–5.

    Article  CAS  Google Scholar 

  78. Stott, F.H. and Wood, G.C. (1987) Mater. Sci. Engng, 87, 267–74.

    Article  CAS  Google Scholar 

  79. Stecura, S. (1986) Thin Solid Films, 136, 241–56.

    Article  CAS  Google Scholar 

  80. Kvernes, I. and Noerholm, O. (1987) Coatings for diesel engines and associated problems, in Procedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. III73–81.

    Google Scholar 

  81. Yonushonis, T.M., Hg, H.K. and Novak, R.C. (1990) Thick thermal barrier coatings for diesel engines, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 1145–51.

    Google Scholar 

  82. Beardsley, M.B. (1990) Application of thick thermal barrier coatings to diesel engines, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. II53–6.

    Google Scholar 

  83. Lutz, J.C. and Harris, D.H. (1988) Development of thermal barrier coatings for the internal combustion engine, in Thermal Spray Technology, New Ideas and Processes. Proceedings of the National Thermal Spray Conference (ed. D.L. Houck), Cincinnati OH, ASM International, Metals Park OH, pp. 437–42.

    Google Scholar 

  84. Kamo, R., Woods, M. and Sutor, P. (1987) Development of tribological system and advanced high-temperature in-cylinder components for advanced high-temperature diesel engines, in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. IV73–92.

    Google Scholar 

  85. Kamo, R. and Bryzik, W. (1992) Tribological and thermal ceramic coatings for advanced adiabatic engine, in Proceedings of the 4th International Symposium on Ceramic Materials and Components for Engines (eds R. Carlsson, T. Johansson and L. Kahlman), Gothenburg, Sweden, Elsevier Applied Science, London, pp. 1260–75.

    Google Scholar 

  86. Goward, G.W. (1974) Coatings and coating processing for gas turbine airfoils operating in a marine environment, in Proceedings of the 1974 Gas Turbine Materials in the Marine Environment Conference (eds J.W. Fairbanks and I. Machlin), Castine ME, Metals and Ceramics Information Center, Battelle, Columbus OH, pp. 277–96.

    Google Scholar 

  87. Strangman, T.E. (1982) U.S. Patent 4,321,331.

    Google Scholar 

  88. Ulion, N.E. and Ruckle, D.L. (1982) U.S. Patent 4,321,310.

    Google Scholar 

  89. Meier, S.M., Nissley, D.M. and Sheffler, K.D. (1991) Thermal barrier coating life prediction model development. NASA Contractor Report 189111, NASA Lewis Research Center, Cleveland OH.

    Google Scholar 

  90. Fritscher, K. and Schulz, U. (1993) Burner-rig performance of density-graded EB-PVD processed thermal barrier coatings, in Ceramic Coatings (ed. K. Kokini), ASME New York, MD-Vol. 44, pp. 1–8.

    Google Scholar 

  91. Shulz, U., Fritscher, K., Peters, M. and Kaysser, W.A. (1994) Processing and behavior of chemically graded EB-PVD MCrAIY bond coats, in Proceedings of the 3rd International Symposium on Structural and Functional Gradient Materials (eds B. Ilschner and N. Cherradi), 10–12 Oct. 1994, Lausanne, Switzerland, pp. 441–6.

    Google Scholar 

  92. Toriz, F.C., Thakker, A.B. and Gupta, S.K. (1989) Surf. Coat. Technol., 39/40, 161–72.

    Article  Google Scholar 

  93. Meier, S.M., Gupta, D.K. and Sheffler, K.D. (1991) J. Mineral, 43(3), 50–3.

    CAS  Google Scholar 

  94. Fritscher, K and Bunk, W. (1990) Density-graded TBCs processed by EB-PVD, in Proceedings of the 1st International Symposium on Functionally Gradient Material, 8–9 Oct. 1990, Sendai, Japan.

    Google Scholar 

  95. Borom, M.P. and Johnson, C.A. (1992) Surf. Coat. Technol., 54/55, 45–52.

    Google Scholar 

  96. Miller, R.A. and Lowell, C.E. (1982) Thin Solid Films, 95, 265–73.

    Article  CAS  Google Scholar 

  97. Wu, B.C., Chang, E., Chang, S.F. and Chao, CH. (1989) Thin Solid Films, 172, 185–96.

    Article  CAS  Google Scholar 

  98. Miller, R.A, and Berndt, C.C. (1984) Thin Solid Films, 119, 195–202.

    Article  CAS  Google Scholar 

  99. Miller, R.A. (1984) J. Amer. Ceram. Soc., 67(8), 517–21.

    Article  CAS  Google Scholar 

  100. Chang, G.C., Phuchareon, W. and Miller, R.A. (1987) Surf. Coat. Technol., 30, 13–28.

    Article  CAS  Google Scholar 

  101. McDonald, G. and Hendricks, R.C. (1980) Thin Solid Films, 73, 491–6.

    Article  CAS  Google Scholar 

  102. Brindley, W.J. and Miller, R.A. (1990) Surf. Coat. Technol., 43/44, 446–57.

    Article  Google Scholar 

  103. Berndt, C.C. (1985) Trans. ASME, J. Engng Gas Turbines and Power, 107, 142–6.

    Article  CAS  Google Scholar 

  104. Grossklaus, W.D., Katz, G.B. and Wortman, D.J. (1986) Performance comparison of advanced airfoil coatings in marine service, in Proceedings of the Symposium on High Temperature Coatings (eds M. Khobaib and R.C. Krutenat), Orlando FL, The Metallurgical Society, Warrendale PA, pp. 67–83.

    Google Scholar 

  105. Nagaraj, B.A., Maricocchi, A.F., Wortman, D.J. et al. (1992) Hot corrosion resistance of thermal barrier coatings. Tech. Paper 92-GT-44, ASME, New York.

    Google Scholar 

  106. Goward, G.W. (1987) Private communication.

    Google Scholar 

  107. Miller, R.A. (1986) Ceramic thermal barrier coatings for electric utility gas turbines. NASA Tech. Memo. 87288, NASA Lewis Research Center, Cleveland OH, pp. 1–10.

    Google Scholar 

  108. Jones, R.L., Williams, C.E. and Jones, S.R. (1986) J. Electrochem. Soc., 133(1), 227–30.

    Article  CAS  Google Scholar 

  109. Jones, R.L. (1988) High Temp. Technol., 6(4), 187–93.

    CAS  Google Scholar 

  110. Jones, R.L. (1991) Mater, at High Temp., 9(4), 228–36.

    CAS  Google Scholar 

  111. Singhal, S.C. and Bratton, R.J. (1980) Trans. ASME, J. Engng Power, 102(10), 770–5.

    Article  CAS  Google Scholar 

  112. Rhys-Jones, T.N., Nicholls, J.R. and Hancock, P. (1983) Corr. Sci., 23, 139–49.

    Article  CAS  Google Scholar 

  113. Hertl, W. (1988) J. Appl. Phys., 63(11), 5514–20.

    Article  CAS  Google Scholar 

  114. Susnitzky, D.W., Hertl, W. and Carter, C.B. (1988) J. Amer. Ceram. Soc., 71(11), 992–1004.

    Article  CAS  Google Scholar 

  115. Barkalow, R.H. and Pettit, F.S. (1979) Mechanisms of hot corrosion attack of ceramic coatings materials, in Proceedings of the First Conference on Advanced Materials for Alternative Fuel Capable Directly Fired Heat Engines (eds J.W. Fairbanks and J. Stringer), Castine ME, Dept. of Energy, Washington D.C, pp. 704–14.

    Google Scholar 

  116. Dent-Glasser, L.S. and Duffy, J.A. (1987) J. Chem. Soc. Dalton Trans., 1987, 2323–8.

    Article  Google Scholar 

  117. Stott, F.H., de Wet, D.J. and Taylor, R. (1994) MRS Bull., Oct. 1994, pp. 46–9.

    Google Scholar 

  118. McKee, D.W., Luthra, K.L, Siemers, P. and Palko, J.E. (1979) Resistance of thermal barrier ceramic coatings to hot salt corrosion, in Proceedings of the First Conference on Advanced Materials for Alternative Fuel Capable Directly Fired Heat Engines (eds J.W. Fairbanks and J. Stringer), Castine ME, Dept. of Energy, Washington D.C., pp. 258–69.

    Google Scholar 

  119. Hodge, P.E., Miller, R.A. and Gedwill, M.A. (1980) Thin Solid Films, 73, 447–53.

    Article  CAS  Google Scholar 

  120. Strangman, T.E. and Schienle, J.L. (1990) Trans. ASME, J. Engng Gas Turbines and Power, 112, 531–5.

    Article  CAS  Google Scholar 

  121. Chu, W.-F. and Rohr, F.J. (1988) Adv. Ceram. Mater., 3(3), 222–4.

    CAS  Google Scholar 

  122. Bornstein, N., Roth, H. and Pike, R. (1993) Vanadium corrosion studies. UTRC Report R93–918120–2, United Technologies Research Center, E. Hartford CT.

    Google Scholar 

  123. Nagaraj, B.A. and Wortman, D.J. (1990) Trans. ASME, J. Engng Gas Turbines and Power, 112, 536–42.

    Article  CAS  Google Scholar 

  124. Petitbon, A., Boquet, L. and Delsart, D. (1991) Surf. Coat. Technol., 49, 57–61.

    Article  CAS  Google Scholar 

  125. Mohammed Jasim, K., Rawlings, R.D. and West, D.R.F. (1992) Mater. Sci. Technol., 8, 83–91.

    Google Scholar 

  126. Mohammed Jasim, K., Rawlings, R.D. and West, D.R.F. (1992) J. Mater. Sci., 27, 3903–10.

    Article  Google Scholar 

  127. Alpaugh, R.T. (1987) Overview of DOE’s transportation conservation heat engine program, in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 11–8.

    Google Scholar 

  128. Kamo, R. and Bryzik, W. (1984) Cummins/TACOM advanced adiabatic engine. SAE Tech. Paper 840428, Society of Automotive Engineers, Warrendale PA.

    Book  Google Scholar 

  129. Hoag, K.L. (1987) A perspective on low heat rejection diesel engine development, in Proceedings of the 1987 Coatings for Advanced Heat Engines Workshop (ed. J.W. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 119–15.

    Google Scholar 

  130. Woschni, G., Spindler, W. and Kolesa, K. (1987) Heat insulation of combustion chamber walls — a measure to decrease the fuel consumption of IC engines? SAE Tech. Paper 870339, Society of Automotive Engineers, Warrendale PA.

    Book  Google Scholar 

  131. Woschni, G. and Spindler, W. (1988) Trans. ASME, J. Engng Gas Turbines and Power, 110, 482–8.

    Article  Google Scholar 

  132. Round table discussion of Woschni and Spindler paper (1988) Trans. ASME, J. Engng Gas Turbines and Power, 110, 488–502.

    Google Scholar 

  133. Fairbanks, J.W. (1987) The enigma of the adiabatic or low heat rejection diesel engine concepts, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 149–60.

    Google Scholar 

  134. Alkidas, A.C. (1989) Performance and emissions achievements with an uncooled heavy-duty, single cylinder diesel engine. SAE Tech. Paper 890144, Society of Automotive Engineers, Warrendale PA.

    Book  Google Scholar 

  135. Kawamura, H. (1991) The study of a heat insulated engine constructed by ceramic engine parts, in Proceedings of the 4th International Symposium on Ceramic Materials and Components for Engines (eds R. Carlsson, T. Johansson and L. Kahlman), Gothenburg, Sweden, Elsevier Applied Science, London, pp. 8–31.

    Google Scholar 

  136. Levy, A.V. (1988) The performance of ceramic coatings on diesel engine combustion zone components, in Thermal Spray Technology, New Ideas and Processes. Proceedings of National Thermal Spray Conference (ed. D.L. Houck), Cincinnati OH, ASM International, Metals Park OH, pp. 263–72.

    Google Scholar 

  137. Holloman, L. and Levy, A.V. (1990) The use of ceramic coatings on combustion zone components to enhance the performance and durability of natural gas combustion engines, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 181–96.

    Google Scholar 

  138. Winkler, M.F., Parker, D.W. and Bonar, J.A. (1992) Thermal barrier coatings for diesel engines: ten years of experience. SAE Tech. Paper 922438, Society of Automotive Engineers, Warrendale PA.

    Book  Google Scholar 

  139. Assanis, D., Wiese, K., Schwarz, E. and Bryzik, W. (1990) Investigation of the effects of thin ceramic coatings on diesel engine performance and exhaust emissions, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 125–33.

    Google Scholar 

  140. Beardsley, M.B. and Larson, H.J. (1992) Thick thermal barrier coatings for diesel components. NASA CR-190759, Caterpillar Corp., Peoria IL, prepared for NASA, Cleveland OH.

    Google Scholar 

  141. Wilson, R. (1993) Diesel Progress, Engines & Drives, Mar. 1993, pp. 50–3.

    Google Scholar 

  142. Reichenbach, D.H. (1990) Ceramics in diesel engines — outlook for the future, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 117–24.

    Google Scholar 

  143. Kvernes, I. and Lugscheider, E. (1990) High quality TBC and wear resistant coatings — problems and requirements, in Proceedings of the 1990 Coatings for Advanced Heat Engines Workshop (ed. J. Fairbanks), Castine ME, Dept. of Energy, Washington D.C., pp. 11109–35.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Jones, R.L. (1996). Thermal barrier coatings. In: Stern, K.H. (eds) Metallurgical and Ceramic Protective Coatings. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1501-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1501-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7171-0

  • Online ISBN: 978-94-009-1501-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics